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Foreword 

The rapid pace of technological developments life sciences witnessed the last 
ten-fifteen years changed completely the research paradigm. Especially in 
genetics, we no longer analyze only a few genes or characteristics of few 
biological samples, but we are embarking on whole genome profiling of 
hundreds of specimens, in the hope of deciphering how life and species 
evolved, or how to treat cancer, for example. While in the beginning 
mathematics and informatics were simply tools used mostly for confirming or 
rejecting some biology-driven hypothesis, in the new standard of a novel 
research field of Computational Biology they play a central role, on equal foot 
with biology. In this highly interdisciplinary environment, researchers with 
various backgrounds have to find a common language to collaborate 
effectively.      
             
This is the context in which the Faculty of Science of Masaryk University 
introduced in its curriculum the Computational Biology study programme, 
endorsed and supported by the Institute of Biostatistics and Analyses (IBA) of 
the Masaryk University. In line with its continuous efforts to keep abreast of 
latest trends in the field, IBA organizes a series of summer schools in 
Computational Biology, to encourage free and open exchanges and 
collaborations between professors, young scientists as well as students in 
computational biology and related domains. The informal format of these 
schools replaces the classical ex cathedra lectures with free discussions to 
which students are particularly welcome to contribute, their active 
participation constituting a substantial part of the summer school´s 
programme.  
 
The 8th edition of the summer school in Computational Biology continues the 
tradition of inviting as lectures confirmed researchers specialized in various 
aspects of biological data analysis and interpretation. This year's programme 
places at its core the practical aspects of making discoveries from genomic 
data. Its vision is to provide an overview of theoretical aspects and examples 
(case studies) of typical applications which have the potential of changing our 
current understanding of biology, be it seen from a clinical or evolutionary 
perspective. The programme includes lectures and practical lessons presenting 
aspects of biomarker discovery, large-scale meta-analyses and evolutionary 
biology. We hope this specific field of application of computational biology 
will bring some new viewpoints and experience for all participants.  
 
We are gratefully acknowledging the financial support of the Ministry of 
Education, Youth and Sports of the Czech Republic; project 
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CZ.1.07/2.2.00/07.0318, Interdisciplinary Development of Computational 
Biology Study Programme, where this summer school is organized. 
 
On behalf of the programme and organizing committee, 
 
Brno, August 19, 2012 
 

Eva Budinská 
Vlad Popovici 
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Lectures

From Analysis of Genomic Data
to Clinical Applications
– Case Studies





Recent progress in cancer research and targeted  
anticancer therapy 

Stjepan Uldrijan1,2 
1 Department of Biology, Faculty of Medicine, Masaryk University Brno; e-mail: 

uldrijan@med.muni.cz 
2 International Clinical Research Center, St. Anne´s University Hospital in Brno 

Abstract 

Current treatment options for many cancers are still limited to standard chemotherapy 
or radiotherapy that are associated with serious side effects and often do not result in 
satisfactory patient responses. There is clearly a need for new, more efficient targeted 
anti-cancer therapies designed on the basis of our better understanding of biological 
processes taking place inside cancer cells on the molecular level. This lecture 
summarizes the principles involved in malignant transformation of cells and provides 
examples of a successful translation of new findings in the field of cancer biology into 
more efficient anticancer therapies. At the same time, the lecture suggests new areas of 
cancer research that could translate into cures for cancers that do not respond to 
currently available therapies.  

Key words  

Cancer biology, mutations, hallmarks of cancer, targeted therapy. 

1. Introduction 

Current treatment options for the majority of human cancer are limited to standard 
chemotherapy and radiotherapy and usually show variable efficacy depending on the tumor 
type and stage. Since DNA-damaging drugs and radiation cause a wide range of negative 
side effects in patients, scientists and medical professionals involved in cancer research are 
trying to find new, more efficient and at the same time less damaging molecularly targeted 
therapeutic approaches for as many tumor types as possible. Some of the most successful 
recently introduced anti-cancer therapies have been developed through deeper understanding 
at the molecular level of biological processes taking place in tumor cells. However, nearly all 
tissues in human body can give rise to cancer, leading to a large variety of cancer types with 
different behavior, including differences in the speed of growth, the ability of metastasize 
and in responses to treatment, which makes the identification of a universal cure for cancer 
virtually impossible. The quest for this universal cure is complicated even more by the fact 
that even tumors of the same type and origin can differ significantly in their genetic makeup. 
That is why current cancer research favors the idea of personalized approach to cancer 
therapy – finding new drugs targeting genetic defects in cancer cells found in a specific 
subtype of cancer. For this purpose, high-throughput whole-genome genetic analyses of large 
numbers of tumor samples of a particular cancer type will help us to fully comprehend the 
role of specific genetic changes in the development of individual types of cancer. While this 
is a long-term aim of current cancer research, some underlying principles common for all 
human cancers that govern the transformation of normal human cells into malignant cancers 
have already been identified and this knowledge has been used to rationally target the growth 
of tumor cells. These basic principles and several examples of their practical use in targeted 
cancer therapy will be discussed in this lecture. 
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2. Hallmarks of cancer  

Hannahan and Weinberg have defined the hallmarks of cancer as acquired functional 
capabilities that allow cancer cells to survive, proliferate, and disseminate (Hanahan and 
Weinberg 2000). They include sustaining proliferative signaling, evading growth 
suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and 
activating invasion and metastasis. More recently, additional hallmarks have been added to 
the list: reprogramming of energy metabolism and evading destruction by immune cells 
(Hanahan and Weinberg 2011). All these hallmarks are acquired in different tumor types via 
distinct mechanisms and at various times during the course of multistep tumorigenesis. Their 
acquisition is made possible especially by the development of genomic instability in cancer 
cells, which generates random mutations, ranging from point mutations to large 
chromosomal rearrangements.  

3. Examples illustrating the progress in targeted anticancer therapy 

3.1. CML – Tyrosin kinase inhibitors 

The majority of cases of human chronic myelogenous leukemia (CML) carry reciprocal 
translocation between chromosomes 9 and 22, which carry the abl and bcr genes, 
respectively.  This specific genetic change leads to the formation of fused, hybrid genes 
encoding hybrid Bcr-Abl proteins with strong and deregulated growth-promoting activity. A 
small molecule inhibitor, imatinib mesylate (Gleevec), has been developed to inhibit the 
tyrosine kinase activity of the Bcr-Abl fusion protein in CML (Weinberg 2007). Imatinib and 
similar new drugs have allowed the majority of CML patients to survive a disease that was 
incurable only a decade ago.   

3.2. Malignant melanoma – BRAF inhibitors 

Malignant melanoma is responsible for about 80 % of all deaths from skin cancers (Miller 
and Mihm 2006). Although the large majority of people diagnosed with early melanoma are 
cured after surgical excision of the primary tumor, advanced metastatic disease is usually 
refractory to all current forms of systemic therapy and has a very poor prognosis. The 5-year 
survival rate is estimated at only 6%, with a median survival time of 6 months (Singh et al. 
2008, Dahl and Guldberg 2007). Among cytotoxic agents, dacarbazine and its analogue 
temozolomide remain the chemotherapy of choice but they produce objective response in 
only 15 to 20% of patients and the median duration of the response is only 4 months.  

Currently the most intensely tested targeted therapeutic strategy for malignant melanoma is 
the inhibition of the RAS/RAF/MEK/ERK mitogen-activated protein kinase (MAPK) 
pathway. This signal transduction pathway, which normally regulates cell proliferation and 
survival in response to extracellular stimuli, has been found constitutively activated in the 
majority of human melanomas, most commonly by activating mutations of N-Ras and B-RAF 
proto-oncogenes that are found in approx. 80% of malignant melanomas (Fecher et al. 2008). 
Sorafenib (BAY 43-9006), an oral inhibitor of BRAF kinase has demonstrated activity 
against melanoma in preclinical tests and it is currently the most promising drug in clinical 
trials for the targeted treatment of malignant melanoma, together with another BRAF 
inhibitor PLX4032. 

3.3. Downregulated p53 pathway – Mdm2 inhibitors 

Tumor suppressor p53 has a key role in cellular responses to various stress stimuli, including 
DNA damage, telomere erosion, ribosomal stress, hypoxia, and oncogene activation 
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(Vousden and Lane 2007). In the normal cellular environment, p53 protein levels are kept 
low, mainly by interactions with its major negative regulator Mdm2 that serves as an E3 
ubiquitin ligase for p53 and targets p53 for degradation via 26S proteasome. In response to 
stress stimuli, p53 is stabilized and activates the expression of its target genes, leading to 
responses such as cell cycle arrest, senescence, or apoptosis. The growth suppressive 
function of p53 is commonly lost in human tumors, in about 50% of cancers by mutations 
leading to the loss of the ability of p53 to bind DNA and transactivate its target genes. In 
cancer cells that retain wild type p53 gene, the p53 pathway function is often abrogated by 
the overexpression of inhibitory proteins, such as protein E6 of human papillomavirus (HPV) 
(e.g. in cervical carcinomas), ubiquitin ligase Mdm2 (e.g. in sarcomas), or a related protein 
MdmX (e.g. in breast, colorectal or lung cancers) (Toledo and Wahl 2006). The stress 
response pathway regulated by p53 has gained considerable attention over the years and 
some small molecule drugs designed to modulate the activity of this pathway have already 
reached clinical testing, most notably the Mdm2 inhibitor Nutlin-3 (Brown et al. 2007).   

3.4. Breast cancer - The concept of synthetic lethality 

Synthetic lethality was first described in genetic studies on Drosophila, in which the loss of a 
certain combination of two different genes lead to a lethal phenotype, while loss of each of 
the genes separately had no effect on the viability of the flies. However, the majority of 
synthetically lethal combinations have been identified using genetic manipulations of yeast 
(Scherens and Goffeau 2004, Ooi et al. 2006, Nijman 2011). In comparison to yeast, the 
identification of synthetically lethal gene combinations in multicellular organisms including 
mammals is much more complicated, because of a much larger genome, higher copy number 
or increased number of variants of a certain gene and a certain level functional redundancy 
among related genes. Despite this, the concept of synthetic lethality has already entered 
clinical testing as a therapeutic approach for certain human cancers. Breast or ovarian 
carcinomas often exhibit defects in homologous DNA recombination caused by mutations in 
genes coding for BRCA1/2 proteins and this makes them extremely sensitive to PARP 
inhibitors that block the alternative DNA repair pathway - the base excision repair (BER). 
Combinations of PARP inhibitors with DNA damaging chemotherapy are currently tested in 
clinical trials in breast and ovarian cancers with very promising results (Farmer et al. 2005, 
Boss et al. 2010). 
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Gene expression-based classifiers 

Vlad Popovici1,2 
1 Bioinformatics Core Facility, Swiss Institute of Bioinformatics,  

CH-1015 Lausanne, Switzerland; e-mail: vlad.popovici@isb-sib.ch 
2 Institute of Biostatistics and Analyses, Masaryk University,  

CZ-62500 Brno, Czech Republic 

Abstract 

Whole genome profiling and decreasing costs of genome sequencing enable measuring 
the activity of tens of thousands of genes which can potentially be used for making 
predictions about patients’ risk of relapse or response to a specific treatment. These 
predictions are based on mathematical models that combine the measurements from a 
selected set of genes into either a continuous score or a binary outcome. In order to 
build such models that can be used in clinical practice with real benefits for the patients, 
a rigorous methodological approach must be followed and the purpose of this chapter is 
to briefly describe some theoretical considerations and practical results in the field of 
gene expression-based classifiers. 

Key words  

Classifiers, biomarkers, performance estimation, model validation. 

1. Introduction 

The clinical practice has shown that many cancer treatments benefit only a small group of 
patients who received them. Lacking precise means of identifying the patients most likely to 
respond to a given treatment results in many patients being prescribed ineffective treatments, 
which puts a serious burden on them and on the health care systems. The personalized 
medicine addresses exactly this problem by trying to diagnose and treat a disease using 
information about patient’s genes, proteins and environment. At the core of the diagnostic 
and treatment decisions are placed the classifiers, which are mathematical models 
assembling all the information into a system producing binary or multi-valued decisions. In 
this context, the new treatments are accompanied by diagnostic tests which are supposed to 
identify the most likely responders. 

The problem of companion diagnostic tests is even more important in the case of targeted 
therapies, which are “drugs or other substances that block the growth and spread of cancer 
by interfering with specific molecules involved in tumor growth and progression”  (NCI’s 
Facts Sheet, http://www.cancer.gov/). As these drugs target specific molecular processes, 
such as cell growth signaling, angiogenesis, apoptosis, or stimulate the immune response, 
highly specific tests are needed to identify the right patient population. 

 

1.1. What is a classifier in the context of genomic data 

There are various names under which the classifiers appear in the literature related to gene 
expression-based diagnostics and prognostics. They may be called “(multigene) expression 
signature” or “(multigene) biomarkers” or simply “risk predictors/scores”. In general, we talk 
about a classifier when we have in mind a model which produces a crisp decision (be it 
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binary or multi-level). While a score can be converted into a decision (see further on in this 
chapter), and so “score” and “classifier” terms could be used interchangeably in some 
context, a gene expression signature is usually not enough to specify a classifier. A gene 
expression signature refers more to the genes selected to be specific to some phenotype, but 
it normally does not specify the way these genes should be combined to predict the 
phenotype in question. Also the term “biomarker” could be misleading, since it may also 
refer to some markers that can be mechanistically linked to a disease activity. In conclusion, 
we prefer the term “gene-based classifier” by which we mean a prediction model which 
combines the gene expressions (and maybe other variables) in a model. This classifier may 
have a score as an intermediate step towards decision. 

2. Classifiers 

Without any loss of generality, we will consider in the following the case of binary 
classifiers, constructed on continuous variables and we will denote the two alternatives 
(called classes) by “-1” and “+1”. Let ݂:Թ௣ → Թ be a real-valued function which will map a 
vector x ∈ Թ௣ to a continuous score. A score ݏ ൌ ݂ሺxሻ is converted into a binary class label 
by ݄ሺݏሻ ൌ signሺݏሻ. Some classifiers will directly produce the binary label (e.g. the basic Top 
Scoring Pairs algorithm, described later in this chapter), while others will firstly produce a 
score. As the labels are easily obtained from the scores and since using continuous functions 
is more convenient for modeling, we will generally focus on finding the function ݂ rather 
than ݄. We can then state the problem of learning a classification rule to be the task of 
finding a real-valued function ݂ ∈ ࣠ that maps each point of the input space (here considered 
to be Թ௣) to a score that, after thresholding, will produce a binary label which will not differ 
in too many cases from the true label. This formulation is too vague to be of any practical 
utility as long as we do not specify 

 which is the function space ࣠ in which we search for the solution; 

 what we mean by ‘differ’, and 

 how many misclassified cases is ‘too many’ for a classifier to be considered good. 

The choice of the function space ࣠ is the first decision a data modeler has to take and, in 
most cases, it means defining a parametric form for the score function ݂. Let the parameters 
on which ݂ depends be denoted by a ݎ-dimensional parameter vector ߱ ∈ Ω ⊆ Թ௥. The 
problem of training a classifier becomes an optimization problem in which one has to find 
the optimal vector ߱∗ such that the expected risk of misclassification (expected prediction 
error) is minimized: 

߱∗ ൌ arg	maxఠ නܮ൫ݕ, ݂ሺxሻ൯	݀ܲሺx,  ,		ሻݕ

where ܮ is a loss function penalizing the discrepancies between the predicted label ݂ሺxሻ and 
the true label ݕ. The integral is taken with respect to the probability density function ܲ which 
is generating the population ሼሺx, ሻ|xݕ ∈ Թ௣, ݕ ൌ േ1ሽ. As the probability function is usually 
not available, the risk is estimated from a finite training set (sample) given as a pair of sets 
ܺ௡௧ ൌ ሼx௜, ݅ ൌ 1,… , ݊ሽ ⊂ Թ௣ and ௡ܻ

௧ ൌ ሼݕ௜ ൌ േ1, ݅ ൌ 1,… , ݊ሽ of points draw independently 
and identically distributed from the underlying probability. In this case, the prediction error 
can only be estimated from the finite sample, thus the estimation will become dependent on 
the particular training set. This observation justifies the introduction of various error 
estimation techniques, some briefly described in this chapter. 
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The loss function is of central importance in defining the form of the classifier and several 
ways of penalizing the errors have been proposed in the literature (Hastie et al, 2009; Duda et 
al, 2001). Here we will consider only the case of squared error loss, 

,ݕ൫ܮ ݂ሺxሻ൯ ൌ
1
2
൫ݕ െ ݂ሺxሻ൯

ଶ

 

which is, by far, the most commonly used. In the case of a risk of misclassification estimated 
from a finite sample, we talk about empirical risk (of misclassification) and we estimate it by 
its mean value over the given sample: 

1
݊
෍ܮሺݕ௜, ݂ሺx௜ሻ

௡

௜ୀଵ

		 , 

which for squared error loss is simply the usual mean squared error, 
ଵ

௡
∑ ൫ݕ௜ െ ݂ሺx௜ሻ൯

ଶ
௜ . 

Figure 1 depicts a possible scenario for a binary classification problem in the case of ݌ ൌ 2, 
with the solid line representing the classification boundary (i.e. the separation between the 
two classes), defined by the equation ݂ሺxሻ ൌ 0. Let us analyze the three proposed solutions: 
in the first panel, the classifier perfectly separates the two classes, while the other two 
solutions are simpler (smoother) classification functions, which misclassify some points. In 
practice, it turns out that a function that perfectly separates the training set will usually 
perform poorly on unseen data, i.e. the prediction will have high variance on different 
samples drawn from the same underlying distribution ܲ as the training data. We say in this 
case that the first function overfits the training set. On the other hand, a too simplistic 
explanation as the one given by the second classifier will never be able to satisfactory fit the 
training data, i.e. the model chosen has a large bias. In this case we say that the model 
underfits the training set. The central problem of machine learning is to find that right 
tradeoff between underfitting and overfitting, that will generate functions ݂ able to 
generalize well, i.e. their performance remains good on unseen data. We will further detail 
what we mean by good performance of a classifier. This problem is also known as bias-
variance dilemma in classical statistics. 

Figure 1. Three possible scenarios for a trained classifier: different degrees of regularization 
lead to different solutions, with various performances. 

       

To conclude this introductory section, we note that the genomic applications of classifiers 
face a specific problem of fitting models in very high dimensional spaces (in general, ݌ ≫
݊). Because of the high number of degrees of freedom of the learning problem, one can 
always find a classifier that perfectly fits the training set, for any possible labeling. Or, to put 
it in other terms, higher is the dimensionality of the space slower is the convergence of the 
estimators (of the parameters) – phenomenon called curse of dimensionality. It follows that 
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one has either to use a very large learning set or to constrain the form of the classifier such 
that it fits only the most salient characteristics of the two classes. The first solution is not 
practically possible, so only the second approach remains feasible. Luckily, the variables 
(genes) are not all independent and a large proportion of them are usually not important for 
the classification task. This explains why, despite of the unfavorable settings, for many 
applications one can find proper classifiers with reasonable performance. 

2.1. Bayesian decision theory 

Let us consider for a moment the best case scenario in which the classification problem is 
completely specified by the probability functions: 

 ܲሺݕ ൌ ൅1ሻ and ܲሺݕ ൌ െ1ሻ are called prior probabilities (priors) and give the 
probability of either of the classes, when no other information is available. In 
general, for a binary classification problem, one excludes the possibility of 
observing any other class but one of the two (ݕ ∈ ሼേ1ሽ), so ܲሺݕ ൌ 1ሻ ൌ 1 െ
ܲሺݕ ൌ െ1ሻ. 

 class-conditional density functions, ݌ሺx|ݕ ൌ 1ሻ and ݌ሺx|ݕ ൌ െ1ሻ, for x ∈ Թ௣, the 
probability density function of x, given that its label is “+1” (or “-1”). 

Figure 2. Class conditional density functions for ESR1 gene expression as measured by one 
probeset: ݌ሺ205225_at	|ݕ ൌ ܴܧ" ൅ "ሻ and ݌ሺ205225_at	|ݕ ൌ ܴܧ" െ "ሻ. The two classes are 
estrogen-positive (ER+, red line) and estrogen-negative (ER-, blue line). 

 

Using Bayes’ rule, it is easy to obtain the posterior probability 

ܲሺݕ ൌ േ1|xሻ	ൌ
ݕ|ሺx݌ ൌ േ1ሻ	ܲሺݕ ൌ േ1ሻ

ሺxሻ݌
. 

This shows that by observing the vector x (called evidence) and using information about 
priors and class conditional densities – called likelihood – one can obtain the posterior 
probability that the observed instance belongs to one of the classes. It follows naturally that, 
for minimizing the risk of misclassification one must assign x to the class with maximum 
posteriori probability (Bayes decision rule): 

( 16 )



݂ሺxሻ ൌ ൜
െ1, ܲሺݕ ൌ െ1|xሻ ൐ ܲሺݕ ൌ ൅1|xሻ
൅1, ܲሺݕ ൌ െ1|xሻ ൑ ܲሺݕ ൌ ൅1|xሻ

 

It is sometimes convenient to consider this rule in terms of log-ratio: assign x to class “+1” if 

log
ܲሺݕ ൌ ൅1|xሻ
ܲሺݕ ൌ െ1|xሻ

൒ 0, 

and to class “-1” otherwise. 

The Bayesian decision is optimal in the sense that it minimizes the probability of error, but it 
requires full information about priors and class-conditional densities to be available. 
However, this is not the case in real applications, and a plethora of approaches have been 
proposed to deal with more realistic scenarios. One can try, for example, to consider a 
parametric model for the probabilities (e.g. linear discriminant analysis, naïve Bayes 
classifier, etc. etc.) or to use nonparametric estimators of the densities. 

2.2. Linear discriminants 

Suppose that the class-conditional densities are multivariate Gaussians, 

ݕ|ሺx݌ ൌ േ1ሻ ൌ
1

ሺ2ߨሻ௣/ଶหΣേଵห
ଵ/ଶ ݁

ି
ଵ
ଶ൫xିఓേభ൯

೅
ஊേభ
షభሺxିఓേభሻ 

where ߤേଵ are the mean vectors and Σേଵ are the covariance matrices of the two respective 
classes (| ∙ | is the determinant operator). If the two classes have equal covariance matrices, 
Σିଵ ൌ Σାଵ ൌ Σ, the log-ratio of the posteriors becomes 

log
ܲሺݕ ൌ ൅1|xሻ

ܲሺݕ ൌ െ1|xሻ
ൌ log

ܲሺݕ ൌ ൅1ሻ
ܲሺݕ ൌ െ1ሻ

െ
1
2
ሺିߤଵ ൅ ାଵߤାଵሻ்Σିଵሺߤ െ ଵሻିߤ ൅ x்Σିଵሺߤାଵ െ  .ଵሻିߤ

The values for the class means and the covariance matrix have to be estimated from the 
training set, using the usual estimators. The priors are estimated by the class frequencies, 
෠ܲሺݕ ൌ ൅1ሻ ൌ ݊ାଵ/݊, and ෠ܲሺݕ ൌ െ1ሻ ൌ ݊ିଵ/݊, where ݊ା/ିଵ are the number of elements in 
each class. The above equation shows that the decision boundary between classes is a linear 
function of x (for equal covariance matrices). By introducing the discriminant functions 

േଵሺxሻߜ ൌ x்Σିଵߤേଵ െ
1
2
േଵߤ
் Σߤേଵ ൅ logܲሺݕ ൌ േ1ሻ 

the decision rule ݕ ൌ argmax௞ୀേଵ  ௞ሺxሻ is equivalent to comparing the log-ratios of theߜ
posteriors with 0. As a final remark, we note that ݀ሺx, ሻߤ ൌ ሺx െ ሻ்Σሺxߤ െ  ሻ is calledߤ
Mahalanobis distance from x to ߤ (which becomes Euclidean distance if the covariance 
matrix is the unit matrix) and that, under equal covariances assumption, the decision rule 
assigns x to the class whose centroid (ߤ) is the closest in the sense of this metric. 

The squared error loss function, mentioned in the introduction of this chapter, is intimately 
linked to LDA classifier as this can be derived from a linear regression model, where we fit a 
linear model to the label variable, considered this time a continuous variable. 

2.3. Nearest neighbor and related classifiers 

The intuition behind the nearest neighbor and related methods is that an observation should 
be assigned to the class containing other similar observations. The nearest neighbor 
classifiers employ a voting scheme for deciding the class membership of a sample x ∈ Թ௣. 
The predicted (estimated) label is  
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ොݕ ൌ signቌ ෍ ௜ݕ
௫೔∈ேೖሺ௫ሻ

ቍ 

where ௞ܰሺxሻ is a neighborhood of ݇ closest points to x. In other words, the predicted label ݕො 
is the most common label among the ݇ points in the neighborhood. If ݕො ൌ 0 it means that the 
point lies on the decision boundary and it has equal number of points from each class in its 
neighborhood. 

The notion of neighborhood implies the existence of a metric which, at its turn, is closely 
related to the notion of similarity, in the sense that more similar observations are closer to 
each other than observations less similar. In the case of Թ௣, the natural metric is the 
Euclidean distance, but this is not necessarily the best choice. For genomic applications, in 
which the observations may be corrupted by high levels of noise, one may consider 
alternative distances, for example 

 correlation distance: ݀௖௢௥௥ሺx,zሻ ൌ 1 െ  ሺx,zሻߩ

 cosine distance: ݀௖௢௦ሺx,zሻ ൌ 1 െ
〈x,z〉

‖x‖‖z‖
, where 〈⋅,⋅〉 denotes the scalar product of two 

vectors, and ‖⋅‖ the ܮଶ norm, respectively. 

The parameter ݇ ൒ 1 has to be optimized for each problem, usually by cross-validation (see 
later on in this chapter). Smaller values will lead to a better fit of the training set, but may 
have an adverse effect on the generalization properties of the classifier. Also, there is a direct 
link between the parameter ݇ and the smoothness of the decision boundary. 

Instead of considering all the points in the data set in the decision rule, one may choose to 
select only a few “representative” patterns from each class and to compute the distances only 
to these points in order to classify a new observation. This is similar to LDA decision where, 
as we have seen above, one computes the Mahalanobis distance to the centers of the two 
classes and uses this information to classify the new observation. However, many other 
strategies of choosing the “centers” of the classes (like averaging all class members, or 
taking their median, for example) and distances to these centers can be employed, each 
leading to a slightly modified version of the algorithm. This class of nearest centroid 
classifiers is commonly employed in genomic applications because, despite not being 
necessarily the best in term of performance, it generally leads to simple classification rules 
that are readily interpretable and have reasonable performance. 

2.4. Top scoring pairs 

Top scoring pairs (TSPs) (Geman et al, 2004) are simple two-genes binary classifiers, in 
which the prediction of the class label is based solely on the relative ranking of the 
expression levels of the two genes. The rank--based approach to classification ensures a 
higher degree of robustness to technical variations and makes the rule easily portable across 
platforms. Also, the direct comparison of the expression level of the genes is easily 
interpretable in the clinical context, making the TSPs attractive for medical tests. 

Let again x ൌ ሾݔ௜ሿ௜ୀଵ,…,௣ ∈ Թ௣ be a vector of measurements (e.g. gene expression) 
representing a sample and let the corresponding class label be ݕ ൌ േ1. Then, for all pairs of 
variables i and j, a score is computed,  

௜,௝ݏ ൌ ܲ൫ݔ௜ ൏ ݕ௝หݔ ൌ 1൯ െ ܲ൫ݔ௜ ൏ ݕ௝หݔ ൌ െ1൯,			1 ൑ ݅, ݆ ൑  ݌
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where P are conditional probabilities and the corresponding decision rule is: if ݔ௜ ൏  ௝ thenݔ
predict ݕ ൌ 1, otherwise ݕ ൌ െ1. The pair with the highest score or the top k pairs are then 
considered for the final model (Geman et al, 2004; Tan et al, 2005). 

Remarkably, this method does not require the optimization of any parameter and does not 
depend on any threshold. Figure 3 shows an example of a TSP predicting the estrogen 
receptor status. The decision boundary (in grey) is always a line with a slope of 1. 

Figure 3. Predicting estrogen receptor status: if GSTP1 < ESR1, then the sample is 
considered ER+ (red dots), otherwise ER- (blue dots). 

 

3. Performance parameters and performance estimation 

In the context of clinical applications, a classifier is seen as a test and its continuous value 
݂ሺxሻ is called score. This score is discretized into two (binary tests) or more categories by 
using a number of thresholds (or cut-offs) and a prediction about the patient is made based 
on the predicted category. For example, a test can be used to predict if a patient has a given 
disease (binary test), or to which of a number of risk groups he/she belongs (e.g. low, 
medium and high risk groups – categorical tests). By convention, we will say that an 
individual which is predicted to have the disease to be positive for the test. 

Several categories of medical tests are more common: 

 diagnostic tests are designed to detect the ‘diseased’ condition in a patient; 

 prognostics tests try to predict an outcome of interest, like ‘recurrence’ vs. ‘no-
recurrence’; 

 predictive tests are used to detect which patients may/may not respond to a 
treatment; and 

 screening tests are usually applied to a large population of normally healthy 
individuals in which the disease has low prevalence, and are usually followed by 
other confirmatory tests. 

Each of these tests is designed to work in specific settings. For example, we require a 
screening test to detect all (or, say 99%) of all diseased cases (must be sensitive), even if it 
will produce a relatively high rate of false alarms (false positives). In contrast, a diagnostic 
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test must be sensitive and with low false positive rates. On the other hand, as we have seen 
from the Bayes decision theory, the prior distributions influence the final decision. A 
screening test is used in a population where the positive cases have a low prevalence: for 
example, in 2009 breast cancer in UK had an age-standardized incidence of 124.4 cases in 
100 000 women, so we can set a prior ܲሺݕ ൌ ሻ݁ݏܽ݁ݏ݅݀ ൌ 0.125. A diagnostic test which is 
applied to confirm a screening test will work on a population with a much higher incidence 
of the disease, so a possible prior would be ܲሺݕ ൌ ሻ݁ݏܽ݁ݏ݅݀ ൌ 0.75. The screening and 
diagnostic tests could be the same, with the only difference being the value of the threshold 
for the score, above which we call a patient diseased. And this threshold is optimized based 
on the prior probabilities. 

In the following, we will briefly review some of the performance parameters that are used for 
characterizing the classifiers. For a comprehensive treatment of the subject in the context of 
clinical applications, see (Pepe, 2003). 

3.1. Threshold-dependent performance parameters 

We will use the following convention for calling the classes: 

 true label (disease status) is denoted by ܦ: 

ܦ ൌ ൜
െ1,		if	non-diseased
1, 	if	diseased  

 predicted label is denoted by ܻ: 

ܻ ൌ ൜
െ1,		if	negative	for	the	test
1,		if	positive	for	the	test  

A continuous score ݂ሺxሻ is converted into a prediction by signሺ݂ሺxሻ െ  is a ߠ ሻ, whereߠ
threshold. 

For a given observation x one of the following 4 situation may arise: 

 ܦ ൌ 1, ܻ ൌ 1: true positive – the prediction and the true label are both indicating a 
diseased case 

 ܦ ൌ െ1, ܻ ൌ െ1: true negative – the prediction and the true label are both 
indicating a non-diseased (healthy) case 

 ܦ ൌ 1, ܻ ൌ െ1: false negative – the test fails to detect the disease status 

 ܦ ൌ െ1, ܻ ൌ 1: false positive – the test predicts as diseased a healthy case 

In assessing the performance of a classifier/test one is interested in estimating the 
probabilities of each of the above four events to occur. The estimation is done based on the 
respective frequencies in a test set. One usually constructs a confusion matrix containing 
counts of the observed occurrences (Table 1), from which the probabilities are estimated. 
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Table 1. The confusion matrix and the associated probabilities. 

 True labels (gold standard)  

Predicted labels ܦ ൌ െ1 ܦ ൌ 1 
Marginal 
probabilities 

ܻ ൌ െ1 
True negatives 

ܲሺܻ ൌ െ1|ܦ ൌ െ1ሻ 

False negatives 

ܲሺܻ ൌ െ1|ܦ ൌ 1ሻ 
ܲሺܻ ൌ െ1ሻ 

ܻ ൌ 1 
False positives 

ܲሺܻ ൌ ܦ|1 ൌ െ1ሻ 

True positives 

ܲሺܻ ൌ ܦ|1 ൌ 1ሻ 
ܲሺܻ ൌ 1ሻ 

Marginal 
probabilities (priors) 

ܲሺܦ ൌ െ1ሻ 
ܲሺܦ ൌ 1ሻ 

(prevalence) 
 

 

The following performance parameters are some of the most commonly used criteria for 
judging a diagnostic test: 

 disease-centric measures the performance predicting the disease: The true 
positive/negative fractions (TPF, FPF): 

TPF ൌ ܲሺܻ ൌ ܦ|1 ൌ 1ሻ,	FPF ൌ ܲሺܻ ൌ ܦ|1 ൌ െ1ሻ 

They are both needed to characterize the test and they are dependent on the chosen 
threshold. If one knows the disease prevalence (ܲሺܦ ൌ 1ሻ), then the probability of 
error can be estimated by 

ܲሺܻ ് ሻܦ ൌ 	ܲሺܦ ൌ 1ሻሺ1 െ TPFሻ ൅ ൫1 െ ܲሺܦ ൌ 1ሻ൯FPF 

A perfect test will have TPF ൌ 1 and FPF ൌ 0. The TPF is also called sensitivity, 
while 1 െ FPF is called specificity. In the clinical testing literature, the two latter 
terms are more common than the first ones. 

 predicted values are used to quantify the clinical value of a test (the likelihood of 
disease when the test is positive): The positive/negative predicted values (PPV, 
NPV) are defined as 

PPV ൌ ܲሺܦ ൌ ܦ|1 ൌ 1ሻ,	NPV ൌ ܲሺܦ ൌ െ1|ܻ ൌ െ1ሻ 

A perfect test will have PPV ൌ NPV ൌ 1, while one totally uninformative, PPV ൌ
ܲሺܦ ൌ 1ሻ and NPV ൌ ܲሺܦ ൌ െ1ሻ ൌ 1 െ ܲሺܦ ൌ 1ሻ. 

There is a simple connection between the two groups of measures and its derivation is left as 
an exercise to the reader. 

Since the estimators for the above measures are random variables from a Bernoulli trial, one 
can compute confidence intervals (CI), using any of the proposed methods (e.g. normal 
approximation, Wilson score, Agresti-Coull, and others (Newcombe, 1998)). Whatever 
method is used, the confidence intervals (usually 95% CIs) must be reported for a full 
characterization of the test.  
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As a final remark, we note that the Cis obtained based on binomial distribution refer to each 
of the measures individually and do not provide a confidence region for the joint distribution 
of the pairs (TPF,FPF) or (PPV,NPV). To obtain such confidence region, one can use the 
following result: 

Proposition. If ሺ ௟ܲ௢௪, ௨ܲ௣ሻ and ܳ௟௢௪, ܳ௨௣ሻ are 1 െ  univariate confidence intervals for two ∗ߙ
binomial random variables ܲ and ܳ, then the rectangle ൫ ௟ܲ௢௪, ௨ܲ௣൯ ൈ ሺܳ௟௢௪, ܳ௨௣ሻ is a 
ሺ1 െ ,ሻ confidence region for ሺܲߙ ܳሻ, where ߙ ൌ 1 െ ሺ1 െ  .ሻଶ∗ߙ

For example, from two 95% univariate confidence intervals, one can construct a 90.25% 
confidence region for the joint variable. 

3.2. Threshold-independent performance parameters 

We have already noted that the performance measures described in the previous section 
depend on the chosen value of the threshold ߠ, and therefore we call them point estimates. 
However, these tests (classifiers) may need to work in different contexts, where one may 
want to select a different operating regimen (trade-off between sensitivity and specificity, or 
PPV and NPV). Moreover, when comparing two tests with different operating regimens, it is 
difficult to draw any conclusion. It is clear that we need a characterization of the test which 
is independent of the threshold. The receiver operating characteristic (ROC) curve serves 
exactly this purpose. 

Figure 4. Varying the threshold t above which a score ݂ሺxሻ leads to a positive test, generates 
a ROC curve in the (FPF, TPF) space. 

 

By letting the TPF and FPF varying with the threshold, 

TPFሺߠሻ ൌ ܲሺ݂ሺxሻ ൒ ܦ|ߠ ൌ െ1ሻ 

FPFሺߠሻ ൌ ܲሺ݂ሺxሻ ൒ ܦ|ߠ ൌ 1ሻ 

we obtain the definition of the ROC curve: 

ܥܱܴ ൌ ൛൫FPFሺߠሻ,TPFሺߠሻ൯		ห		∀ߠ ∈ Թሽ 

It is easy to see that the ROC function is monotone increasing and that it is invariant to 
strictly increasing transformation of the scores. The parametric form of the curve is given by 

ܥܱܴ ൌ ቄቀߙ,TPF൫FPFିଵሺߙሻ൯ቁ ߙ∀	| ∈ ሺ0,1ሻቅ 
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A summary of the ROC curve is obtained by taking the area under the curve (AUC): 

ܥܷܣ ൌ නROCሺߠሻ	݀ߠ

ଵ

଴

 

AUC is lower-bounded by 0.5 (corresponding to a totally uninformative test) and upper-
bounded by 1. It can also be seen as the Mann-Whitney-Wilcoxon U-statistic: AUC ൌ
ܲሺ ஽ܻୀଵ ൐ ஽ܻୀିଵሻ, i.e. the probability of correctly ordering a random pair of cases. 

3.3. Performance estimation 

Once a classifier is trained, one has to estimate its performance on unseen data. Lacking 
access to the full data collection on which the classifier will be applied, one will have to rely 
on statistical estimates of the performance. The easiest estimate would be the one obtained 
by applying the classifier on the same data used for training it (plug-in estimate). Except for 
a few rare cases, this estimate will be optimistically biased, i.e. will underestimate the error 
rate. Furthermore, relying on the plug-in estimate will more often than not lead to overfitting 
the training set, i.e. one will find the parameters such that the classifier will have minimum 
error rate on the training set, but it will perform poorly on new data. The morale is that the 
estimation of performance has to be done on an independent data set, completely different 
than the one used for building the classifier. 

One possible option would be to randomly split the data available into two disjoint subsets, 
one used for building the model and one for estimating its performance (split sample 
validation or holdout validation). While appealing, this method has at least two drawbacks: it 
does not use the available data in an optimal way and the training set is reduced drastically in 
comparison with the original sample size. However, the true validation of a classifier, 
diagnostic test remains its long run application on unseen data. 

In order to better use the training data, several resampling methods have been proposed, 
among which: the k-fold cross-validation, Monte Carlo cross-validation, leave one out cross-
validation, bootstrapping, etc. They all have in common the idea of repeatedly randomly 
partitioning the available into a training set and a validation set. The training set thus 
obtained is used for full model construction (including feature selection, meta-parameter 
optimization, model selection, etc.), while the validation set is used for obtaining 
intermediate estimates of the performance. At the end of the procedure, the intermediate 
estimates are aggregated into a final value (usually be averaging, but more sophisticated 
estimates can be used – see for example the .632 estimator below) and a measure of 
variability of the estimate is also computed (variance, standard error, confidence intervals). 
These methods differ in the strategy they use for partitioning the data. We will briefly 
describe some of them here, while for others the reader is referred to (Duda et al, 2001; 
Hastie et al, 2009). 

 k-fold cross validation splits the data into k partitions and uses each of them in turn 
as validation set. Typical values for k are 5 and 10 and the choice represents usually 
a trade-off between a reasonable training set size and the computational burden, as 
the procedure is repeated k times. Note that any two models built in this setting 
share k-2 folds as training data. This means that the predictions are not totally 
independent so the variance of the estimates is usually underestimated. An 
improved performance estimation is obtained by repeating the k-fold cross 
validation on randomly shuffled versions of the original set (the so called repeated 
k-fold cross validation). The final estimate of the performance (e.g. error rate, 
sensitivity, specificity, etc.) is the average of the intermediate estimates. 
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Figure 5. A 3-fold cross-validation scheme: each of the folds is used once and only once as 
validation set (the red block). 

 

 leave-one-out cross-validation is an extreme case of k-fold cross-validation for the 
case k=1. The training/testing steps are repeated n times, where n is the sample size. 

 Monte Carlo cross-validation: repeatedly splits randomly the data set into a training 
and validation set. For example, it retains 2/3 of the data in training and 1/3 for 
validation. The procedure is, in fact, a sequence of split-sample validations applied 
on random permutations of the data. Because of the random split of the data, the 
procedure does not ensure that all points are used for training and validation. 

 bootstrapping, in contrast with the above methods, resamples with replacement 
from the original data set, generating new training sets (bootstraps) of the same size 
n. It means that the new training sets may contain duplicated training examples, 
while other samples are not included. On average, the bootstraps contain 0.632 of 
the original set. The procedure is repeated ܤ times. 

The .632 estimator of the error rate (or other performance measure) is given by 

෠.଺ଷଶܧ ൌ ෠଴ܧ	0.368 ൅ 0.632
1
ܤ
෍ܧ෠௕

஻

௕ୀଵ

 

where  ܧ෠଴ is the plug-in error rate on the full training set and ܧ෠௕ are the error rate 
obtained at repetition b by applying the classifier on the left out data. The empirical 
distribution of ܧ෠௕ can be used for estimating the confidence intervals (for example, 
the 0.025 and 0.975 quantiles of this distribution are good estimates for the lower 
and upper limits of the 95% confidence interval). 

All these resampling procedures for performance estimation can be implemented to preserve 
the proportions of the classes from the original data set. In this case, they are called stratified 
since, indeed, the sampling takes place within strata (levels) of the class label variable. 

4. Guidelines for gene-based classifier development 

Developing gene-based classifiers poses several specific problems, in addition to the 
“classical” issues that arise when building predictive models. Some of the specific issues are 
methodological, while others relate to the utility and relevance of the classifiers built. 

4.1.Methodological issues 

During the last decade thousands of new gene-based classifiers have been published, 
covering a large palette of applications. The US Food and Drug Administration, which is 
responsible for approving new diagnostic tests for medical applications, set up a series of 
projects to investigate the reproducibility and reliability of decision models built on gene 
expression data. These projects, gathered under the acronym of MAQC (MicroArray Quality 
Control) have shown that the technology is mature enough to be used in clinical practice. 
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The second phase (MAQC-II) dealt specifically with classification models (Shi et al, 2010) 
and put forward a number of recommendations, some of which are mentioned below. 

As mentioned before, the data points lies in a high dimensional space where the number of 
dimensions greatly outnumbers the data set cardinality (݊ ≪  ሻ. This makes the problem to݌
be ill-posed, in the sense that, theoretically at least, there may be an infinite number of 
solutions to a classification problem. This is why building a classifier requires a proper 
feature (variable) selection before training the model per se, but the methods for performing 
feature selection are not discussed here. We only mention that the feature selection can be 
done either independently or jointly with training the classifier (may be embed into the 
process of classifier training, as in the case of penalized logistic regression, for example), but 
in any case it is a mandatory step. 

In the early phases of development of a new classifier, one usually tries many different 
algorithms before narrowing the selection to a few of them. The initial set of classifiers to be 
tried should be rich enough such that a suitable model can be found. MAQC-II has shown 
that in most cases the simpler methods perform as well as the more sophisticated ones on 
gene expression data. In this project, more than 30,000 models have been assessed and the 
conclusion was that the major factor impacting the performance of the models is the problem 
difficulty and not the complexity of the algorithms thrown at it (Shi at al, 2010). Once the 
initial exploratory phase completed, the list of candidate models should be short (2-3 
models). These candidates should be evaluated on new data and the final model selected. The 
final model can then be trained and its performance estimated (either by resampling methods 
or on other independent data). This approach requires a fairly large amount of data but will 
likely produce a robust model that will not be overfitted to the training data. 

The performance estimation is usually the most prone to methodological errors task in 
building a classifier. In theory, all the steps performed from raw data to final model must be 
included in the cross-validation (or whatever resampling method) loop. However, this is not 
always feasible: for example, microarray data normalization usually inspects the whole batch 
of raw samples for producing the normalized data. This means that any input vector for the 
classifier will be influenced by the information from other vectors in the data set, so the data 
normalization step has to be performed inside the cross-validation. On the other hand, the 
normalization step can be quite computationally demanding and repeating it at each iteration 
will slow down the process of model assessment. While this issue is not well studied in the 
literature, the common consensus is that the performance estimates are marginally impacted 
by the inclusion or not of the data normalization step in the cross-validation. That is why the 
overwhelming majority of studies leave the normalization outside the cross-validation. 
Nevertheless, apart from the normalization step, all the other processing steps must be 
included in the cross-validation (ideally, even the model selection step – if a model is 
selected at the end). Failing to obey this rule will lead to an optimistically biased estimation 
of performance (Varma and Simon, 2006). By far, the incorrect performance estimation for 
prediction models is the most common error (Dupuy et al, 2007). 

Finally, a question that still lacks a definite answer refers to the samples size needed for 
developing a gene-expression classifier. Sample size estimation can be done under some 
parametric assumptions: for example (Dobbin and Simon, 2005) assume a normal 
multivariate distribution of the classes and derive mathematical formulae for computing the 
sample size for classifier development and validation. Assumption-free approaches exist and 
relies on simulations: (Popovici et al, 2010) shows how using the learning curves can be used 
to estimate if increasing the sample size would bring any benefit for classifier training and 
what would be the required sample size to achieve a predefined performance. 
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4.2. Clinical utility and relevance 

The final goal of gene based classifiers is to answer a clinical or biology research need, so 
they have to compete with the current predictive models used in the respective fields. Thus, 
for the development and validation of clinically-relevant genomic tests a number of key 
stages must be successfully fulfilled (Simon, 2006): 

 identify an important therapeutic decision which would need improvement; 

 the target patient population should be homogeneous enough and treatment uniform, 
so that the results would be therapeutically relevant. Also, the economic 
considerations should not be overlooked: the treatment options and costs of 
misclassification should be such that the resulting classifier/test would be likely to 
be used in clinical practice (the test itself would incur some costs as well); 

 develop the classifier and perform internal validation to assess whether the classifier 
appears to be sufficiently accurate relative to standard prognostic factors currently 
used. This means that initial analysis should prove the superiority (performance 
and/or costs at equal performance) of the new test with respect to current practice; 

 translate the classifier to a platform likely to be used in practice. For example, a 
classifier relying on the use of several (in the order of tens) genes, even though it 
could be develop from microarray data, it is more likely that it implementation on 
qPCR would be more appealing to the clinicians/laboratories; 

 demonstrate reproducibility of the results; 

 independent validation of the complete test in prospective clinical trials. 

5. Examples of gene-based classifiers 

A simple search on PubMed (www.pubmed.com) portal for scientific literature lists hundreds 
of papers proposing new gene expression classifiers (sometimes called biomarkers), 
reflecting the importance these tools gained in the biomedical research. It would be a futile 
and inherently subjective attempt to list here “the most representative” results in the field. 
Therefore we will limit ourselves to mention just three such classifiers and some of their 
applications, each of them having something particular that makes them to stand out of the 
crowd. 

 

5.1. Golub’s ALL vs AML classifier 

Golub’s classifier (Golub et al, 1999) represents one of the first classifiers built in the early 
days of the microarrays. It was designed to distinguish between acute lymphoblastic 
leukemia (ALL) and acute myeloid leukemia (AML), and was addressing the need for a 
standardized test to establish the diagnostic. Their training set consisted of ݊ ൌ 38 cases (27 
ALL, 11 AML) profiled on an early Affymetrix chip (݌ ൌ 6817 genes). They identified 50 
genes correlated with the class distinction (based on a signal-to-noise ratio measure) and 
combined the genes into a score by “weighted vote” (i.e. linear combination of genes’ 
expression values). And then they validated their predictor on an independent collection of 
34 samples. By today’s standards, this represents and easy problem, nevertheless the merit of 
this first system was to prove that building classifiers on gene expression is not only feasible 
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but could solve important diagnostic problems. The fact that their classifier relied on know 
oncogenes (like c-MYB, HOXA9) strengthen the confidence in such decision systems. 

5.2. Compound covariate predictor 

In (Radmacher et al, 2002) a generalization of Golub’s classifier was proposed. Again, for a 
specimen ݅ a score is computed as a weighted sum of the expression values of a number of 
genes, 

௜ݏ ൌ 	෍ݐ௝
௝

 ௜௝ݔ

where the weights ݐ௝ are the signed t-statistics measuring the association of gene ݆ with the 
class to be predicted. The sign is indicating if the gene is positively or negatively associated 
with the class. The score is then compared to a threshold computed as the average of the 
mean scores of each class. This compound covariate predictor is prototypical for large 
number of classifiers based on gene expression. It has the appealing property of being easily 
understandable as each gene contributes to the score proportional to its fold change between 
the two classes. 

5.3. Top scoring pairs 

The final example of gene based classifier is represented by Geman’s Top Scoring Pairs 
(TSP) classifier (Geman et al, 2004), described in section 2.4. The striking feature of this 
classifier is its simplicity: for easier classification problems, it suffices to compare the 
expression levels of only two variables (genes) for taking a decision. However, as this is 
seldom enough for most of the problems, extensions of this algorithm have been proposed in 
which the top pairs are combined by majority vote (Tan et al, 2005) or by weighted 
combinations (Popovici et al, 2011). Despite its apparent simplicity, the classifier performs 
remarkably well on a large number of problems. Moreover, as the decision is taken by 
comparing the relative order of two genes, the classifier is extremely robust to noise and 
translates well from one platform to another. 

Recently, this classifier was used to build a predictive model for identifying the colorectal 
cancer patients harboring a BRAF mutation (Popovici et al, 2012). In this study, the authors 
used the TSP to build a 64-gene-based classifier (32 pairs) to distinguish the BRAF mutant 
patients from those BRAF wild type and KRAS wild type. The training set consisted in 431 
cases (of which 47 were BRAF mutants). Despite the highly imbalanced settings, the 
classifier’s estimated performance (using repeated 5-fold cross-validation) was extremely 
good (sensitivity 95.8% and specificity 86.5%). The proper use of cross-validation procedure 
led to an accurate estimation of the performance, as the independent validation has shown: 
on three external data sets, the aggregated performance was: sensitivity 96.0% and 
specificity 86.24%. The classifier has demonstrated its good robustness, as the external 
validation sets were originating from different microarray platforms than the training set. 

While the original purpose of the classifier was to predict the BRAF mutant patients, when 
applied to KRAS mutant population (which was not part of the training set) it segregated it 
into two subpopulations with clearly different gene expression patterns (on selected 
differentially expressed genes) – Figure 6. 
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Figure 6. Heatmap showing the different expression patterns within the KRAS mutant 
population, between BRAF-mutant-like patients (those predicted by the classifier, marked in 
red in the right column) and the rest of KRAS mutants. 

 

Figure 7. Survival after relapse: patients predicted to be “BRAF mutant” form a high risk 
group, with a median survival time of about 12 months. 

 

The classifier had also strong prognostic value, i.e. it predicted the high risk patients. For 
examples, Figure 7 shows the Kaplan-Meier curves for the two populations predicted by the 
classifier (pred-BRAFm stands for “predicted BRAF mutant”, while pred-BRAFwt for 
“predicted BRAF wild type”). This discovery is of clinical relevance, since it identifies a 
larger population at risk than initially considered by the clinical practice. Also, it opens new 
interventional avenues which would target specific pathways active only in this “BRAF-
mutant-like” population. Finally, it is of importance also for the design of clinical trials since 
it clearly shows that the KRAS mutant population is not homogeneous and extra 
stratification factors should be taken into account. 
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6. Some concluding remarks 

In this chapter we tried to briefly present a number of key concepts for understanding the 
classifiers in general and the specific issues arising from their application in the context of 
gene expression data. While for optimal application of classification algorithms intimate 
knowledge of the theory underlying their development is needed, for making good use of 
them a more superficial understanding of the principles of rigorous classifier development is 
enough. What remains extremely important is to understand the risks resulting from 
improper validation and performance estimation: the classifiers will never perform as 
expected. 
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Abstract 

Identification of clinically relevant molecular subtypes became an important tool in 
elucidating tumor biology. Robustness of the analytical approach employed for this task 
and consequently the robustness of derived subtypes is of major concern, if further 
experiments are to be conducted to confirm derived hypotheses. Here, we discuss 
multiple novel techniques for the control of robustness in cluster analysis designed for 
analysis of high-density molecular data. 
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1. Introduction 

Subtyping based on high density molecular data, such as microarrays, aims at identifying 
groups of samples with similar molecular patterns. These can be for instance similar patterns 
of gene expression, microRNA expression or methylation. Finding molecular subtypes is 
very relevant mainly in medicine, especially in diseases that appear homogenous histo-
pathologically, yet give a very heterogeneous response in terms of treatment outcome or 
survival. Recently, a lot of effort is dedicated to molecular subtyping of different cancers. 
Breast cancer for instance, was the first one where gene expression subtyping was applied, 
revealing a set of groups, that serve until now a basis for treatment consideration (Perou et 
al., 2002). Molecular subtypes help to elucidate the underlying biological mechanisms 
responsible for heterogeneity in tumour behaviour and help to focus the research on the 
subtype specific drugs targets, with hope to optimize treatment and ensure better prognosis 
of the given cancer as a whole. In order to make molecular subtypes clinically relevant, many 
additional analyses elucidating the biological, clinical and prognostic inference of subtypes 
are needed. The analysis becomes a fairly complex process involving different data-mining 
and statistical tools, together with thorough bio-medical interpretation of results.  

Hereby, we will focus on the most important part of the subtyping procedure – robust 
clustering. 

2.  Example dataset 

Throughout this article, we will use two datasets: 

golub dataset -  a microarray derived gene expression dataset available in R package 
multtest under the name golub, comprising 38 samples of three groups of acute 
leukaemia (AML – acute myeloid leukaemia, ALL-B – acute lymphoid leukaemia B cell 
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type and ALL-T – acute lymphoid leukaemia T-cell type) and gene expression values of 
3051 genes. This was the first dataset used to demonstrate the use of gene expression data in 
cancer studies (Golub et al., 1999). 

random dataset - a matrix of 1000 features and 100 samples, randomly sampled from normal 
distribution with 0 mean value and standard deviation equal to 1. This dataset will serve an 
example of a dataset without particular inner structure.  

3. Robust clustering 

Clustering – or, so called unsupervised learning - is the analytical approach used for subtype 
derivation. The main objective of clustering is to find distinct, preferably non-overlapping 
subpopulations within the large population of interest, members of which share similar 
pattern. Different basic clustering techniques exist and can be divided into model-based and 
distance-based methods. The model based methods use parametric assumptions on data 
distribution and often provide probabilities of cluster assignment.  The distance-based 
methods are based on a similarity measure and can be further split into hierarchical and non-
hierarchical, according to the algorithm they apply in order to group the samples. The 
detailed description of these methods and discussion on the choice of metrics is beyond the 
scope of this article and can be found elsewhere (Budinska et al., 2009).  

In large genomic studies, hierarchical clustering is a particularly preferred method, because 
of its pattern visualization advantage. Often, not only clusters of samples, but also clusters of 
features – molecular entities - that underpin biological differences are of importance. 
Heatmap – a colored two dimensional plot with rows and columns  representing samples and 
genes, ordered according to the hierarchical clustering dendrogram is one of the most often 
published type of figure in the field of large-scale molecular data (with the exception of 
DNA sequencing). 

It is well known that the choice of clustering algorithm and metrics affects the final results, 
because clustering algorithms are biased towards partitions in accordance with their own 
clustering criterion. Moreover, clustering algorithms are designed to provide a data partition, 
even in non-existence of such a pattern, and the significance of these results must be assessed 
ad-hoc. While the clustering algorithms and corresponding metrics can be selected a-priori, 
based on the data type, our experience or published recommendations, two main issues are 
still to be addressed: i) the determination of the number of clusters and ii) the assessment of 
the confidence of the selection of number of clusters and cluster assignment for individual 
samples. Missing the external measure of class assignment (ground truth), the evaluation of 
clusters is based solely on internal validation measures, estimating the quality based on the 
intrinsic data values. 

These issues are of particular importance in the data analysis of high density molecular data, 
which suffer from the curse of dimensionality problem. The small number of samples (tens 
to hundreds) and relatively huge number of molecular features (thousands, tens of thousands) 
makes clustering techniques susceptible to over-fitting, due to the sensitivity to noise, which 
is in these data much more abundant. This highly affects the robustness of the clustering to 
the sampling variability. 

Resampling of the original dataset is away to simulate sampling variability. Although the 
idea of resampling in clustering is not new (Jain and Moreau, 1988), in the case of more 
noisy high-density molecular data, the preference is to avoid sampling with replacement, 
because replicated values can be artificially considered a separate cluster (Monti et al., 
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2003). Multiple methods have been recently suggested to address these problems in the 
concept of microarray data analysis, mainly based on repeated resampling and consequent re-
clustering of the original dataset, in order to study the behavior of the results when data is 
disturbed. This approach is simulating possible differences between different datasets, 
presumably resulting in a more robust result (for a review, see e.g. Handl et al., 2005).  

For example a prediction-based resampling method Clest was designed (Dudoit and 
Fridlyand, 2002) in order to robustly estimate the number of clusters, showing the superiority 
of its performance in microarray data over six other methods, including more conventional 
such as Silhouette (Kaufman, Rousseeuw, 1990), or more recent such as gap (Tibshirani et 
al., 2001). However, this method does not solve the problem of the assessment of the 
confidence of cluster assignment for individual samples. A new method assessing both 
problems – consensus clustering (Monti et al., 2003) - was suggested and was successfully 
applied in different cancer subtyping analyses. In a comparative study (Giancarlo et al., 
2008) this method was also evaluated the best method in terms of performance and algorithm 
independency. We will dedicate the following subsection to the description of this method. 

3.1. Consensus clustering 

Is a resampling and re-clustering based method designed to represent the consensus across 
multiple runs of a clustering algorithm (Monti et al., 2003), in order to: 

 determine the number of clusters in the data and to assess the stability of the 
discovered clusters 

 represent the consensus over multiple runs of a clustering algorithm with random 
restart, so as to account for its sensitivity to the initial conditions. 

In addition, it serves a visualization tool for the evaluation cluster number, membership, and 
boundaries. 

The basic principle is to disturb the structure of the original N × P data matrix by random 
selection of a subset of samples and/or features. The new dataset is then consequently 
clustered, given the selected clustering algorithm, similarity measure and number of clusters 
or tree cut height. This resampling and clustering is repeated L times. In the l-th run, the 
cluster membership of samples is recorded and two N × N matrices are created: 

 connectivity matrix )(lC that stores for each pair of samples i,j the information 

whether they were clustered together, e.g. 1)( l
ijC if sample i and j belong to the 

same cluster, 0 otherwise 

 indicator matrix )(lI  that stores for each pair i,j the information whether they were 

both selected in the resampling, e.g. 1)( l
ijI if sample i and j were in the same 

selection, 0 otherwise 

After all l runs, the consensus matrix M is calculated by dividing the number of times two 
features were found together in the same cluster by the number of times that they have been 
selected together in the sampling subsets. A consensus matrix is therefore a N × N matrix 
that stores for each pair of items the weighted proportion of clustering runs in which the two 
items were clustered together: 
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The idea behind this approach is that samples that are frequently found in the same cluster 
represent more reliable cluster members than those who cluster together less frequently, 
being more sensible to the random noise and changes in feature selection. Each entry of the 
consensus matrix is a consensus index of a given pair of samples, with values from 0 (no 
consensus, samples were never members of the same cluster) to 1 (perfect consensus, 
clusters were members of the same cluster 100% times). Consensus matrix M represents a 
robust similarity measure and 1-M is a distance matrix, that can be used as an entry to 
hierarchical clustering in order to obtain a final robust clustering. Figure 1 demonstrates a 
result of hierarchical clustering applied on consensus matrix on our example data. While the 
consensus matrix of the random dataset is very unstructured, a very clear three-class 
structure is visible for the golub dataset.  

The consensus matrix between samples can be directly used to define statistics of  stability of 
clusters and cluster sample assignments. If Ik be a set of indices of samples belonging to 
cluster k, the consensus measure of a cluster k  - cluster consensus - can be defined as an 
average consensus index between all pairs of samples belonging to the same cluster: 
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Figure 1. Heatmap representation of the consensus matrix for the random dataset – left and 
the golub dataset – right, for three clusters. The colour ranges from white representing 0 
consensus to bright blue, representing the consensus of 1.  

 

The corresponding sample consensus for each sample is and cluster l can be defined as: 
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where  ki Is 1 is the indicator function that equals 1 if  ki Is   is true, 0 otherwise. The 

sample consensus is the average consensus index of the sample to all members of the cluster. 
Both measures can be used to identify outliers – either clusters with relatively low consensus, 
suggesting remaining heterogeneity in the cluster, or samples, that could be considered 
outliers because of very small consensus to any other sample in the dataset.  

Consensus matrix can be also used to estimate the optimal number of clusters. For details, 
see section 2.2. 

3.1.1. Other consensus clustering techniques 

Multiple variations of the consensus clustering method exist and are a natural extension of 
the original algorithm.  

Method called merged consensus clustering (Swift et al., 2004), in contrast to the method of 
Monti et al., creates the consensus matrix as a function of runs of consensus clustering with 
multiple different algorithms. This should eliminate the possible negative effect a single 
algorithm, which might not be suitable for the particular type of data.  

Weighted clustering (Deohdar and Ghosh, 2006) builds on the idea that the clusterings 
produced within a consensus clustering procedure are not necessarily of the same quality. If 
an external metrics of quality exists, one should be able to integrate this in order to weigh the 
contributions of each clustering to the final consensus matrix, which is then calculated as 





K

k

k
ijkij CwM

1

)(
, 

where wk is weight of the particular clustering. This method also uses different clustering 
algorithms and different distance measures. 

For the comparison of different consensus clustering algorithms, see for example (Goder and 
Filkov, 2008). 

3.1.2.  R-packages for consensus clustering 

Two major packages are available in R for consensus clustering. The package 
ConsensusClusterPlus (Wilkerson, 2011) provides all the algorithms and metrics as 
described in (Monti et al., 2003). It is a part of Bioconductor repository and can be installed 
directly from R console using command: 

>source(“http://bioconductor.org/biocLite.R”) 
>biocLite(“ConsensusClusterPlus”) 

Package clusterCons implements the merged clustering of (Swift et al., 2004). It can be 
installed directly from R console by using the install.packages()command. 

3.2. Determining the number of subtypes 

In this section, two methods for determining the number of clusters are discussed. Both were 
developed specially for microarray data analysis and hierarchical clustering algorithm.  
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3.2.1. Consensus measure 

Consensus matrix – as described in section 2 - can be also used to estimate the optimal 
number of clusters. If consensus clustering is run for different cluster number values k=1..K, 
the decision criteria can be based on the calculation of for example the average intra-cluster 
consensus for each k. (Monti et al., 2003) propose another measure - the empirical 
cumulative distribution (CDF) 
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which compares the distribution of histograms of entries of consensus matrix M for each k. If 
clustering with k clusters represents a perfect partition, histogram of consensus matrix entries 
will consist of two bins over 0 (no consensus at all between samples from different clusters) 
and 1 (perfect consensus between clusters from different samples). The optimal number of 
clusters can then be decided by computing the area under CDF curve and by examining its 
relative change between different k (delta area). The CDF measure, however, is applicable 
mainly for hierarchical clustering, for which the method was designed. Figure 2 shows 
examples of histograms for k=3 and k=6 and CDF and delta area for the golub data. While 
histogram of consensus measures for the three cluster structure (heatmap on Figure 1 right) 
reveals indeed majority of values on 0 or 1, six cluster structure has a substantially decreased 
number of perfect consensus between samples and increased number of values between 0-1 
suggesting instability of this number of clusters. The delta area plot shows that increasing 
number of clusters from 2 to 3, the area under CDF gains around 0.36, while further 
increasing the number of clusters to 5 has no real impact on the area under CDF change and 
therefore the estimated value of k would be 3 or 4 subtypes. 

3.2.2.  Dynamic Tree Cut 

As already mentioned, hierarchical clustering has its particular importance in genomic data 
analysis. In comparison to other clustering techniques, clusters are defined ad-hoc, by cutting 
the branches of the hierarchically structured similarity tree – dendrogram – the output of this 
clustering – on a fixed height. All the branches below this cut are preserved and represent 
final clusters. The major disadvantage of this static cut approach is that often, different 
clusters are present on different cut heights – naturally presenting more or less similar groups 
of samples, and cutting low in order to obtain a cluster with high internal similarity results in 
the loss of structure of clusters with relatively lower similarity. 

To address this problem, a set of novel dynamic branch cutting methods for detecting 
clusters in a dendrogram of hierarchical clustering was recently proposed (Langfelder et al, 
2007). In this approach, clusters are being defined depending on their shape. The huge 
advantage is that the system of cluster determination is flexible – a set of parameters can be 
used to control the resulting cut – such as for instance cut height, minimal cluster size or 
minimal intra cluster. First method called Dynamic Tree  - this is a flexible extension of the 
static cut, works solely with the structure of the dendrogram. The second method 
DynamicHybrid dynamically crawls the dendrogram in the bottom-up direction and after 
defining clusters offers a possibility of additional assignment of the unassigned samples to 
the closest core clusters defined in the first step, if the requirements on cluster internal 
similarity are met. The description of both algorithms is fairly complex and I do strongly 
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recommend the reader to consult the original paper for more details. Dynamic Tree Cut 
methods are implemented in R package dynamicTreeCut. 

An example of comparison of a static and dynamic cut of dendrogram is demonstrated on the 
golub dataset in Figure 3. Both static cut and DynamicHybrid algorithm (represented by 
function cutreeHybrid) were run with cut height of 1.2. Minimal cluster size selected for 
cutreeHybrid was 3 and 5. While the static cut on the selected height identifies 3 clusters, 
cutHybrid with minimal cluster size of 5 identifies four major clusters. Decreasing the cluster 
size to 3 identifies further, yet still consistent splits. 

Figure 2. Example of CDF derivation and selection of number of clusters on golub dataset. 
Consensus CDF and delta area plot are shown for k varying from 2 to 10. 
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Figure 3. Comparison of static and DynamicHybrid cut (as output by cutreeHybrid 
function of the R package dynamicTreeCut)on the dendrogram from hierarchical 
clustering with average linking algorithm and correlation-based distance between samples of 
golub data.   
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4. Other analytical challenges 

Robustness of findings is one of the most important aspects of the applied research, and is 
indispensable for the clinical relevance. In order to call the subtypes robust, it is vital that the 
patterns defining the groups we find are not specific for a particular dataset, but can be found 
in other similar populations. We say that subtypes must be validated. However, the 
validation in a de-novo developed subtyping system has somewhat different meaning and is a 
much less evident analytical task than in the construction of classifiers. This is because it is 
not obvious to validate a pattern without existing objective class label (the ground truth). 
Without the ground truth, the validation can be done only indirectly, by the assessment of 
subtype specific differences in population characteristics that were not used for their 
construction. Different survival experience or clinically relevant variables are examples of 
such characteristics. 

Often, a development of a subtype classifier is necessary in order to make the results 
applicable for the practice. Preferably, such a classifier will be accurate and robust to 
different technological platforms used to derive data and will be able to classify one sample 
only. This classifier can also serve to call subtypes in the validation set. However, in a 
complex analysis of subtyping, many decisions on types of methods and choice of 
parameters must be made. Although some can be subjected to sensitivity analysis exploring 
the effect of different choices on clustering results (such as similarity metrics or clustering 
algorithms), it is almost impossible to perform such an analysis for all considered parameters 
and algorithmic choices, due to the complexity of the problem. For this reason, simple 
application of the classifier on the validation set and consequent comparison of external 
characteristics of training vs. validation subtypes is not the optimal solution. Better solution 
would be to reproduce the subtyping on the validation set, using the same methods and 
parameters as selected for the training set.  
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5. Concluding remarks 

We have seen a selection of state-of-the-art approaches for robust clustering in the molecular 
subtyping. However, the field is evolving very quickly and reader is strongly encouraged to 
search for the methodological improvements and critically review all the information 
provided with respect to the nature of the particular data analysed.  

Some concepts remain, though, the same. The robustness and reproducibility in clinical 
research is indispensable. One should never search for the final and unchangeable answer – 
which is almost impossible to achieve because of the nature of biology and technological 
limitations - but rather focus on the extraction of the most essential information from the data 
that are available. In this respect, application of consensus clustering base methods seems 
inevitable, although in case of hierarchical clustering, one might consider to use rather 
dynamic Tree Cut for cluster assignment, as it allows for identification of core samples, 
without forcing the less representative samples to be assigned a cluster membership.  
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Abstract 

In this chapter we will provide a brief overview of the opportunities offered by the 
meta-analytical approach to gene expression data analysis. Meta-analysis allows the 
combination of data or intermediate statistical results from multiple studies and thus it 
results in more robust conclusions. After introducing the basic ideas of meta-analysis, 
we will describe their application in the context of a large analysis that led to the 
identification of surprising connections between two different solid tumour cancers – 
breast and colorectal carcinomas.  

Key words: 

Meta-analysis, gene expression data, cancer molecular subtype, gene-module, meta-
gene 

1. Introduction 

DNA microarrays are high-throughput technologies often used in biology for measuring the 
expression of thousands of genes in a single experiment (so called “gene expression 
profiling”) (Somasundaram et al., 2002). These expression profiles can be used for 
identification of differentially expressed genes between two phenotypes (for example cancer 
and normal tissue) or to perform more advanced analyses e.g. studies of the similarities at 
molecular level between various types of cancer. An increasing number of studies use DNA 
microarrays for gene expression profiling and the resulting data collections become 
accessible to the scientific community. Meta-analysis is the ideal tool for the more efficient 
use of these data sets and combining their samples thus increase  the sample size of the 
analysis. The inferences made in the framework of such analyses are expected to be more 
robust than from any analysis of single data sets. Here we will exemplify such a large scale 
meta-analyses within a project aiming at revealing the connections between two types of 
cancers by comparing co-expressed genes. 

2. Case study 

Cancers in general are very heterogeneous and this high degree of heterogeneity can be 
observed even within a single cancer type. That is why two patients with the same diagnosis 
can have different prognosis or responses to therapy. Breast cancer molecular subtypes are 
well characterized and it is of interest to know, whether this knowledge can be used in 
explaining heterogeneity of other cancers, such as colorectal cancer. To this end, we will 
apply a meta-analytical approach to a large collection of expression-clinical-prognostic 
studies in breast cancer. 

Two sets of data are used for illustrative purposes of using of the meta-analytical approach:  
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 The first set consists of 54 gene modules (groups of genes with highly correlated 
gene expression profiles) that were defined in colorectal cancer. These modules are 
representing biological processes and their expression patterns define subtypes of 
colorectal cancer. They were obtained as a result of a previous gene expression 
study in colorectal cancer (Budinská et al., 2012). The file contains only names and 
IDs of genes and numbers of corresponding gene modules.  

 The second set of data comprises 11 publicly available gene expression datasets 
from breast cancer studies. These datasets had been log2-normalized as were used in 
a previous study (Haibe-Kains et al, 2012). Each dataset contains information about 
gene expression for each patient (2245 patients with breast cancer in total). In 
addition, clinical and survival data are available for many of these patients. 

3. Meta-analysis 

Meta-analysis provides the framework and the method for combining results (test statistics, 
effect sizes, p-values) from different studies. The hope is to gain statistical power from the 
increased sample size and, in the meantime, to reach more robust conclusions. Instead of 
combining the results, one may attempt to pool the data into a single larger data sets. This 
second approach has first to address the problem of removing the batch effects, which are 
typical in the case of gene expression data sets, which originate from various laboratories and 
microarray platforms.  

We will first describe this second approach (section 3.1) and then we will delve into meta-
analytical approach. All analyses can be performed in R/Bioconductor - language for 
statistical computing (R Development Core Team, 2010). 

3.1. Removing batch effect between datasets 

Before comparison datasets from different studies, one has to solve the problem of a batch 
effect to be able to combine microarray datasets in order to increase the statistical power, 
often in the framework of sample clustering. To some extent, batch effect can be removed by 
centering the (meta)genes to their respective mean/median values in each dataset or, more 
special methods can be applied, such as the one named  ComBat – an R function that 
implements a method used for adjusting batch effects in microarray expression data using 
empirical Bayes methods (Johnson and Li, 2006). 

3.2. Data dimensionality reduction 

In the analysis of genomic data, it is common to reduce the dimensionality of thousands 
genes by creating several co-expressed modules - groups of genes with correlated expression. 
While correlated gene expression measures provide redundant information, gene modules 
who are often representing biological processes are more reproducible than individual genes 
across different microarray platforms. Gene module is represented often by a single 
representative value – called ‘module score’ or ‘metagene’. This single value is computed for 
each patient for instance as a median or an average of values of gene expression belonging to 
genes within each gene module. By employing metagenes, the dimensionality of data can be 
drastically reduced while retaining simplicity of interpretation, in contrast to data reduction 
by principal component analysis. 
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3.3. Correlating across datasets 

Assessment of the internal gene module correlation structure in other datasets, before 
performing any additional analyses on summarized meta-gene values, is of particular 
interest.  The simplest way would be to score each module with respect to its internal gene-
gene correlations by a dataset-wise average, median or lower quartile. However, more robust 
measure can be obtained by Z-transforming the correlations coefficients across these 
datasets.   

In our example, it was of interest to know which of the colorectal cancer gene modules are 
also highly correlated in breast cancer. For this purpose, we combined individual correlations 
into a meta-correlation defined as negative of Fisher Z-transformed (inverse hyperbolic 
tangent transformed) Pearson’s correlation. 

The computation of the Pearson correlation rijk for each pair of gene (i, j) is performed in 
each study k, followed by a transformation of r using Fisher’s method: 

 ௜௝௞ୀtanhషభሺ௥೔ೕೖሻ  .     (1)ݖ

In the next step, the z-scores are combined across all datasets using a meta-analysis. This 
combined correlation ( meta-correlation) is used as a measure of similarity between pairs of 
genes i and j:  

௜௝ݖ	 ൌ෎
௭೔ೕೖ

ඥ௄೔ೕ

௄

௞ୀଵ

 ,        (2) 

where ܭ௜௝ is the number of datasets where genes i and j are present. 

The quality criterion for significantly correlated modules (for example a minimum of 75 % 
significant gene-gene meta-correlations in the module) can be derived from p-values 
obtained from nonparametric permutation test – 10 000 random modules consisting of n 
random genes are generated for each gene module consisted of n genes. The lower quartile 
Q1 of the tested colorectal cancer module with n genes is compared to the lower quartile of 
the distribution derived in non-parametric permutation test:  

p-value = x + 1 / 10 000 + 1,    (3) 

where x is the number of the Q1 paired meta-correlations in random modules, for whose the 
value of meta-correlation is greater than or equal than the Q1 paired meta-correlation of the 
corresponding colorectal cancer module.  

In our example, modules with p < 0.001 after Bonferonni correction were determined as 
significantly correlated. 

3.4. Hierarchical clustering 

As described in detail in previous chapter, hierarchical clustering is frequently used method 
for cancer subtyping, because it has the added advantage of providing a visualisation 
representation of the results. The similarity between samples can be calculated either on the 
whole set of genes, or on meta-genes, reducing thus a dimensionality of the data. However, 
when combining multiple datasets, the same problem as adressed above arises – how to 
calculate similarity across datasets?  Again, meta-analytical approaches needs to be used. 

In our example, we used nclust2 – a function of R package nclust (Wirapati – personal 
communication)  which enables hierarchical agglomerative clustering of both rows (patients) 
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and columns (genes) across multiple datasets, implementing the meta-analytical correlation 
as described in previous subsection for clustering of genes. 

In the case of sample clustering, the expression profiles are compared both within datasets 
and among all datasets. Therefore it is necessary to know whether measures of similarity 
have biological support (not technical – it would lead to clustering of samples from the same 
datasets). Here, batch effect removal methods as described in section 3.1. can be applied.    

The result of clustering can be visualized in a form of a heatmap, e.g. using coldmap (also a 
function of R package nclust). The coldmap displays the result of clustering in a color coded 
heatmap of gene expression matrix median-centered (meta)gene expression values, but 
dendrogram of samples is split per dataset for visualization of the consistency of pattern 
across datasets. In addition, clinical information of each patient and each dataset can be 
added as a color-coded side panel.  

New clusters of samples can be determined by application of dynamic pruning method 
described  in previous chapter - cutreeHybrid – a function of R package dynamicTreeCut, 
which is specifically designed for hierarchical clustering of microarray data (Langfelder et 
al., 2008). 

3.5. Hypothesis testing 

Hypothesis testing plays an important role in the analysis of genomic data. It may serve for 
identification of differences in continuous variables between groups, such as (meta)gene 
expression. Under the null hypothesis, there is no difference between groups and rejection of 
this hypothesis flags a gene as a potentially biologically important.  

When pooling the data from several sources, the same criteria are applied as already 
mentioned above. Either the analysis is performed in each dataset separately and resulting p-
values or effect-sizes are prone to meta-summarization methods, or – in case of pooling data 
in order to increase the statistical power – a method for batch effect removal must be applied. 
Assuming no residual batch effect, one can use known parametric or nonparametric 
statistical tests for identifying the differentially expressed (meta)genes. The usual parametric 
test assumes Gaussian distribution for the groups and test whether the means of the groups 
are equal. The t-test serves for comparing two groups and the analysis of variance (ANOVA) 
can be used to mutually compare more than two groups. In an assumption-free test, one uses 
nonparametric tests comparing the medians of tested groups. We can use Wilcoxon rank sum 
test and Kruskal-Wallis test comparing two and more than two groups, respectively. 

Statistical testing in genomics results in multiple hypothesis problem, because tens to 
thousands of (meta)genes can be tested simultaneously. Therefore the chance of observation 
of false positive results increases and in consequence it is necessary to correct the level at 
which the null hypothesis is rejected. Standard methods include False Discovery Rate (FDR) 
correction or more conservative Bonferroni correction for adjusting p-values.  

Pearson's Chi-squared or Fisher's exact test can be used for categorical variables (for testing 
of the association between cancer subtypes and clinical variables). The Fisher’s exact test is 
recommended when expected cell counts are less than 5. 

In our example, due to the non-normality of the majority of variables tested, nonparametric 
statistical tests were used for testing for significantly differentially expressed metagenes 
among groups stratified according to levels of clinical variables and markers. Associations 
between metagenes and binary clinical variables were assessed by Wilcoxon rank sum test. 
Kruskal-Wallis test was used in the case of variables with more than 2 levels. Adjustment for 
multiple hypothesis testing was performed by conservative Bonferroni correction. 
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Associations between new molecular subtypes and known clinical and demographic 
variables and molecular markers were tested using Pearson's Chi-squared test. All statistical 
tests were two-sided and results were considered significant at p < 0.05. 

3.6. Survival analysis 

Survival analysis is very valuable in genomic analysis. This is particularly true when new 
groups of patients are being derived, since the differences in survival would be indicative of 
clinical relevance of the identified groups. For this, one needs survival data corresponding to 
patients from gene expression datasets – for example RFS (relapse free survival), OS 
(overall survival), or DMFS (distant metastasis free survival). Then Kaplan-Meier estimates 
of survival (or other method) can be used for estimating each group’s survival probability 
functions. 

Pairwise differences in survival experience between groups of patients can be assessed using 
log-rank test (if survival functions do not intersect) or Gehan-Wilcoxon test (otherwise). 
Because of possible difference among populations one needs to adjust for the effect of the 
dataset – e.g. in the Cox proportional hazards model by applying the strata parameter of the 
coxph function of the survival package in R. 

4. Case study results and discussion 

Applying methods described above within a large meta-analysis on our example data (54 
colorectal cancer modules and 11 gene expression datasets from breast cancer studies), we 
obtained the following results (Imrichová, 2012): 

The analysis of meta-correlations revealed that 28 of 54 gene expression modules as defined 
in colorectal cancer are significantly correlated also in breast cancer datasets, which means 
that these 28 modules can be used for classification of breast cancer too. Metagenes of these 
28 modules are clustered into higher level structures corresponding to molecular functions 
identically as in (Budinská et al, 2012). These groups of metagenes are connected with 
proliferation, immune response and EMT (epithelial-mesenchymal transition). 

Statistical testing showed that these significantly correlated metagenes are statistically 
significantly different in their expression among groups defined by majority of clinical 
variables and breast cancer markers. A parallel biological significance (a difference of 
medians of log2 expression of a metagene within each group ≥ 1) was shown only for three 
metagenes connected with proliferation in the relation to variables histological grade and 
intrinsic subtypes. This discovery is not surprising, because histological grade relates to 
proliferation and very often is used as a surrogate instead of proliferative index Ki67 in IHC 
classification (Tamimi et al., 2012). These proliferative metagenes also showed lower 
expression within luminal A intrinsic subtype – the subtype that is characterized by low 
proliferation (Wirapati et al., 2008). 

The sample hierarchical clustering based on expression patterns of 28 colorectal cancer 
metagenes was performed and new five breast cancer subtypes was determined by dynamic 
tree cut (Langfelder et al., 2008). The result is shown in the form of previously mentioned 
coldmap on Figure 1. Luminal A tumours (that constitute a major part of new subtypes 2 and 
3) were best separated. This subtype was separated probably because of metagenes related to 
proliferation, because luminal A (as the only one of intrinsic subtypes) is characteristic of 
low expression of proliferation AURKA module that is used by breast cancer classifiers 
(Wirapati et al., 2008; Desmedt et al., 2008; Haibe-Kains et al., 2012).  
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Colorectal cancer modules do not contain any gene of ERBB2 module that is used by breast 
cancer classifiers to determine HER2+ intrinsic subtype, therefore it was not surprising that 
these colorectal cancer metagenes did not separate HER2+ tumours from the rest of highly 
proliferating intrinsic subtypes (basal-like and luminal B). On the other hand, colorectal 
cancer modules of immune cluster (whose genes are almost not found in breast cancer 
classifiers) divided intrinsic HER2+, basal-like and luminal B subtypes into two groups 
(creating new subtypes 1 and 4) according to expression of these modules. The new subtype 
5 is composed mainly of luminal B tumours and is characteristic by low expression of 
metagenes related to immune response.  

It is worth noting that an association was observed between the new subtype classification 
and the tumour size, status of ER, PGR, HER2 and histological grade. But nodal status and 
age at diagnosis were independent of the new molecular subtypes. This resulted from 
Pearson's Chi-squared test. 

Survival analysis revealed that the new subtypes are significantly different with regard to 
OS, DMFS and RFS. Patients with new subtypes 1, 2 and 3 had good survival, while patients 
with subtype 4 and 5 had poor survival. Very interesting is the significantly different survival 
between subtypes 1 and 4 that are very similar by their composition of intrinsic subtypes. 
These two subtypes vary in the expression of their immune metagenes. The subtype 1 has 
these metagenes active contrary to subtype 4. An important role of the immune metagenes 
for patient survival was subsequently confirmed by the next testing. 

The main conclusion of the findings summarized above obtained by a meta-analytical 
approach is that gene modules representing biological processes (proliferation, EMT and 
immune response) and defining colorectal cancer subtypes can be used to derive breast 
cancer groups that are significantly different from the intrinsic subtypes and differ in the 
distribution of clinical variables and survival time. The detection of these connections can 
help understanding the heterogeneity of colorectal cancer. The future research of colorectal 
carcinoma therapy could follow the same way as research of breast cancer treatment. For 
example, the same therapy could be used for some of subtypes of colorectal carcinoma with 
similar expression patterns of gene modules as some of the new subtypes of breast cancer 
derived by these modules. It was encouraging to find that some of the hypotheses we derived 
in this analysis have been already published or alluded to in the literature.  

5. Conclusions 

Many gene expression datasets have been published recently. A meta-analytical approach 
enables the mathematical combination of two or more datasets in order to improve the 
reliability of the results. This analytical exercise often requires clever switching between 
purely meta-analytical approaches that combine results from individual datasets (p-values of 
effect sizes), and batch effect removal techniques where the increase of statistical power is 
needed. We have shown above both approaches and their usefulness in an assessment of 
internal correlation structure of gene modules, in the analysis of differentially expressed 
(meta)genes, clustering of genes and samples or statistical testing of the significance of 
(meta)genes or groups of patients with regard to clinical variables and markers or carrying 
out a survival analysis.  
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Figure 1. A coldmap created on 11 publicly available gene expression datasets from breast 
cancer studies. Columns are metagenes, rows are patients. The coldmap shows increased 
(red) or decreased (blue) gene expression of metagenes. The bars on the right show clinical 
information of each patient and classification to intrinsic breast cancer subtypes. Pie 
diagrams demonstrate composition of the new breast cancer subtypes by the intrinsic breast 
cancer subtypes. 
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Abstract 

Increasing volume of publicly available DNA sequence data enables comprehensive 
studies that address integrative questions. For these projects, bioinformatic analysis 
requires advanced methods and computational infrastructure. I present the character of 
DNA sequence matrices for multilocus datasets, which contain large portions of 
missing data. A condition critical for analysis of multilocus data is that datasets for all 
loci or genes need to have partially overlapping taxon sets. The work-flow for analysing 
such data differs between supermatrix and supertree estimation of species trees. In the 
supermatrix approach, aligned sequences for all genes are concatenated and the species 
tree is estimated directly from a partitioned matrix. In the supertree approach, gene 
sequence alignments are used for inference of gene trees. Those are then combined into 
a species supertree. Smaller projects could benefit from utilising all available 
information in the supermatrix. Larger projects should rely on supertree methods for 
computational optimisation. 

Key words  
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1. Introduction 

Tree of Life and similar initiatives intend to map biodiversity across life forms and to 
reconstruct evolutionary relationships between them (Tree of Life Web, Encyclopedia of 
Life, Barcoding Life, BioLib). The information in them reflects current knowledge from 
phylogenetic studies. Results of those, phylogenetic trees and their analyses, are in turn input 
directly into the phylogeny databases (TreeBASE, dryad) with direct links to their respective 
scientific articles. The phylogenies originate from studies that mostly utilise DNA sequence 
data, but frequently also morphological, karyological, behavioural or ecological markers. 
Nevertheless, DNA sequence data provides an easy and cheap way how to obtain abundance 
of reliable markers with relatively simple modes of evolution. Existence of depositories for 
such data (GenBank, dryad) further exacerbates their usage. The principle of usefulness of 
DNA sequences lies in the way in which variability forms and is maintained in DNA. The 
molecule consists of four basic nucleotides, adenine, thymine, cytosine and guanine, and 
their sequence determines the encoded genetic information. The sequences differentiate by a 
clearly defined exchange of one nucleotide base for another. If this change occurs in cells 
that would pass to the next generation, the mutation can persist and even further evolve. 
Other mutations that affect DNA include loss or gain of one to many nucleotides, called 
insertions and deletions, or indels, and rearrangement of longer sequence fragments between 
different positions in the genome such as changes in gene order or chromosomal 
rearrangements. 

( 49 )



The reconstruction of the Tree of Life requires both large- and fine-scale resolution to 
achieve the goal of complete knowledge of life. I will show the options for construction of 
the Tree of Life based on DNA sequence data that address this. 

2. Data for the evolution of life 

From the perspective of phylogeny reconstruction, substitutions are the markers of choice. 
Indels and genomic rearrangement represent structural changes in DNA that are analysed 
similarly as morphological markers. That is: without the need for explicit assumptions of 
what is one evolutionary step (e.g. deletion of one nucleotide or the whole missing segment?) 
and therefore based on similarity. Substitutions have an advantage that their evolution can be 
modelled by accounting for multiple mutations in a single position. Comparison of sequences 
1 and 4 from Figure 1, without information from all sequences 1-4, would lead to a 
conclusion that a single mutation, C→A, separates the two sequences. With complete 
knowledge of the system, we see that more closely related sequences 1 and 2 share the same 
nucleotide in the given position. Their sister sequence 3 is separated by one mutation, 
because it has a T whereas sequence 4 has an A. Thus, the nucleotide position mutated twice 
throughout history of this system. 

Figure 1. Multiple mutations in a nucleotide base position in DNA sequences. a) Phylogeny 
of four taxa. b) Alignment of their DNA sequences, one base position displayed. See text for 
explanation 

 

The older the studied system, the more likely is the occurrence of multiple changes in a 
single nucleotide position. Such multiple mutations, called multiple hits, can be modelled 
with a substitution model. In effect, the substitution model enlarges genetic distances for 
more distantly related sequences to accommodate the chance of multiple hits in certain 
positions in the DNA sequence if those evolved over longer time periods. 

3. Multilocus phylogeny work-flow 

3.1. DNA sequence alignment 

Each nucleotide position in a DNA sequence is a marker that carries information about 
evolution of the sequence. Sufficient variability in the dataset together with correct 
assessment of homology in specific positions – DNA sequence alignment – help reconstruct 
accurate and precise phylogenies. Ideally, the Tree of Life. 

Such a situation is purely hypothetical with our current knowledge and capabilities. The 
reason, unrelenting to date, lies in the need to find homology of nucleotides in the DNA 
sequence across biodiversity. Intensive research leads to development of new methods such 
as alignment-free composition vector phylogenies (Xu and Hao, 2009), k-tuple estimation of 
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genetic distances (Reyes-Prieto et al., 2011) or anchor-based phylogenies (Vishnoi et al., 
2010) that are independent of the homology estimation in DNA sequences. However, these 
methods are intended for whole-genome comparisons utilising datasets orders of magnitudes 
larger than those now considered ambitious that are based on DNA sequence alignment. 
With large amount of sequence data, the alignment-free methods can reduce the information 
present in the DNA sequence in a method-specific way and still retain robustness to infer a 
reliable phylogenetic tree. While the number of whole genome sequences rapidly increases, 
it is still inferior to the number of taxa with shorter segments of sequenced genomes. 
Alignment-based phylogenies are thus still a leading-edge approach in reconstruction of the 
Tree of Life. 

With that comes the need for aligning sequences in such a way that each column in the 
resulting matrix would represent a position in the genome that shares the same evolutionary 
pathway with all other compared sequences and can thus be analysed as a single marker. It 
can be considered a discrete variable with rates of change from one state to another given by 
the substitution model. A gene that would be universally present in life forms and had 
maintained the same function since the appearance of the earliest split that survived to date 
most likely does not exist. Reconstruction of the Tree of Life must then rely on partial 
datasets for sufficiently related organisms to facilitate correct assessment of sequence 
homology and be based on multiple genes for different taxa sets that would enable overlap in 
represented taxa and combination of the information (Figure 2). 

Figure 2. Alignment of eight genes of Sciurini tree squirrels (Pečnerová and Martínková, 
2012). Each line represents a species, DNA sequence data is indicated with black horizontal 
bars, genes are separated with grey vertical lines, white-space represents missing gene 
segments and alignment gaps 

 

There are two approaches how to combine multilocus data from sets of sequences with 
overlapping taxon content (Table 1). One is a concatenation of alignments for individual 
genes, called a supermatrix. The other is a combination of trees reconstructed for each gene 
separately, called a supertree. 

In the supermatrix, one creates a long sequence where each species has DNA sequence data 
in at least one gene and a symbol for missing data (?, -, N, depending on software 
requirements for subsequent analyses) at each position for all other gene segments (Figure 
2). To ascertain that homologic positions with common evolutionary history are ordered in 
columns, DNA sequences must be aligned first for each gene separately (Table 1). 
Otherwise, the alignment algorithm might wrongly assume homology for sequence regions 
that are similar to each other through shared functional constraints on their gene products 
rather than shared evolutionary history. Gene alignments are then concatenated – fit back-to-
back one after another with missing data symbols input for species without data for the 
respective genes.  
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The resulting matrix contains all information that is available in the dataset, albeit with great 
gaps. In case studies presented in this volume (Martínková and Moravec, in press; Pečnerová 
and Martínková, 2012), the supermatrices had 73% and 67% of missing data. In other words, 
as few as 27% and 33% of cells in the supermatrices contained data, which can be expressed 
also as coverage density as low as 0.27 and 0.33, respectively. Yet, both studies present 
robust results with resolution of relationships that were unclear in previous studies based on 
smaller datasets even if those had higher coverage densities. 

Table 1. Work-flow of supermatrix and supertree reconstruction of multilocus phylogenies 

 

3.2. Phylogeny reconstruction 

3.2.1. Sequence partitioning 

After concatenation, the supermatrix is ready for a phylogenetic analysis with one important 
caveat. The sequence is a chimeric construct of genetic information from often very different 
regions of the genome. These might face different evolutionary pressures, which lead to 
different persistence of mutations in DNA. Mutations in protein-coding regions would pass 
through generations only if they were not lethal. Similar mutations in non-coding regions or 
in genes that occur in the genome in multiple copies would not have the same limitation. 
Mutations in them could pass to the next generation without marked hindrance. When 
viewed on a sequence, regions without strict selection against some changes would appear to 
have higher evolutionary rates. This is usually not a result of more frequent mutations in 
such regions, but of easier survival of all mutations to the next generation. 

Therefore, each gene must be treated separately in a partition. Such partitions, blocks of the 
supermatrix, are coded prior to the analysis (Figure 2). The reason why alternative selective 
pressures matter in phylogeny reconstruction is that they affect rates of substitutions. Rate 
matrix and rate heterogeneity distribution modelling (substitution model) in turn affect 
likelihood of the phylogenetic tree. As the tree likelihood is the only measure used to select 
the best tree to represent relationships between studied taxa, its correct estimation is 
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important – a.k.a. correct substitution model is important. Supermatrix is therefore analysed 
in partitions, where each partition represents a sequence with common evolutionary rates, not 
necessarily a single gene. 

3.2.2. Gene and species trees 

In the supertree construction, gene alignments are subject to separate phylogenetic analyses 
first, without the concatenation of the sequences (Table 1). Each gene tree then contains 
relationships of only those taxa, for which DNA sequence information was available, with 
resolution that could be estimated for each gene separately. 

Combination of gene trees depends on the used algorithm. In Table 1, the supertree shows a 
polychotomy – incomplete resolution of a node – with taxa a, b and d displaying unresolved 
relationships. This is frequent in supertrees and can be resolved most clearly by obtaining a 
gene sequence for one species in the group that is not represented in another gene tree. The 
black gene tree shows that sequences a and b are more closely related to each other than 
either is to c. In the grey gene tree, a forms a group with d and both are again more distant 
from c than from each other. Based on the gene trees, there is no information on relationship 
between b and d. Most supertree construction methods use information on topology and 
ignore branch lengths in gene trees (see Pečnerová and Martínková in this volume for an 
overview). Their result is then a cladogram, a tree that demonstrates topology and its branch 
lengths are meaningless. 

Supermatrix analysis generates a phylogeny. Here, branch lengths represent accumulation of 
evolutionary change over time. Using all information in the dataset, the analysis could 
resolve that a is probably more closely related to d than to b. The node defining this and 
marked with an asterisk in Table 1 would be resolved in a dataset of two genes if one of the 
genes would be much more informative for phylogeny reconstruction than the other. For 
more complex datasets with more genes, the relationships become more complicated to infer, 
but even limited information from each partition improves resolution of the species tree. 

4. Supermatrix vs. supertree 

The supermatrix approach is often superior to the supertree approach in accuracy and 
resolution. However, it becomes computationally very intensive very quickly, because the 
number of possible resolved trees rapidly increases with increasing number of analysed 
sequences. Where relationships between the four taxa in Table 1 could be resolved in total in 
15 rooted trees, the Sciurini tree squirrels (Pečnerová and Martínková, 2012) could form 
about 2.2 × 1020 trees and Arvicolini rodents (Martínková and Moravec, in press) 2.8 × 10126 
trees. Exploring the complete tree space becomes unfeasible for more than about ten 
sequences. With increasing number of sequences the computational demands increase too 
quickly even for heuristic searches in maximum likelihood analyses or optimised Markov 
chains Monte Carlo in Bayesian phylogeny inference (Moravec and Martínková in this 
volume). Additionally, assessment of an inspected tree during the search is done with tree 
likelihood, which is estimated by calculating probabilities of ancestral states at all tree nodes 
using the substitution model and for each alignment position. This further slows the analysis 
as calculation of tree likelihood for very long sequences takes time that becomes non-
negligible. Supertrees are vastly more advantageous in such cases. Their construction is fast 
and as the gene trees contain only a fraction of inspected biodiversity, they are easier to 
obtain. The balance for choosing between supermatrix or supertree estimation of species 
trees is therefore decided in the only currency that has a true value in life – time.  
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Abstract 

Phylogenetic relationships inside the tribe Sciurini produce conflict between older 
morphological research and modern molecular studies. We provided a detailed 
phylogenetic analysis by incorporating eight loci and various methods of data 
processing. We used prevailing and user-friendly software packages (Geneious, 
BioEdit, MrBayes, ModelTest). Evolutionary history of Sciurini squirrels was 
examined by means of Bayesian inference of concatenated data set and six supertree 
construction methods. The concatenated data and superstrees generated by 
SuperTriplets, modified MinCut, standard MRP and veto supertree (without source tree 
correction) yielded similar results with taxa grouped according to their zoogeographic 
distribution. The genus Tamiasciurus formed a separate evolutionary lineage at the base 
of our trees and the other taxa gradually diverged into Palaearctic/Indomalayan, 
Nearctic and Neotropical groups. The other used methods, MinCut, Purvis-MRP and 
veto (with source tree correction) showed deviations from this pattern. 

Key words  
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1. Introduction 

Introducing sequences from multiple loci helps enhance accuracy of phylogenetic analyses. 
Wiens (1998) showed that even adding character sets with missing data alters phylogenetic 
accurancy. However, profits of higher data content descend with increasing ratio of missing 
data. 

Two strategies are used for phylogenetic inference based on multilocus data - supermatrix 
and supertree approach. Supermatrix analysis concatenates all characters of all taxa into a 
single matrix, which works as a template for tree construction. Supertree analysis combines 
information of source trees, built independently from source data.  

There are diverse preferences in usage of supermatrices and supertrees to estimate phylogeny 
(de Queiroz and Gatesy, 2007; Sanderson, 1998; Bininda-Emonds, 2004). Supertrees have 
been widely used to reconstruct large phylogenies. According to Bininda-Emonds (2004), 
deficiency of compatible data disabled comparable extant of supermatrix analyses. On the 
other hand, supertree methods are criticised for losing information during integraton of 
source data (de Queiroz and Gatesy, 2007). Comprehensive phylogenetic analysis was 
applied to the group of Sciurini tree squirrels (Pečnerová and Martínková, 2012). We 
analysed eight loci and sequences were processed by both approaches of phylogenetic 
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analysis, supermatrix and supertree. This way, we could compare outcomes of these two 
strategies. Six methods were used for supertree construction. Our results showed similar 
phylogenetic tendencies in trees generated from concatenated dataset and three methods of 
supertree reconstruction. 

2. Materials and Methods 

2.1. Source data 

We used the large collection of sequences of Sciurini squirrels available in GenBank, the 
open-access sequence database (Benson et al., 2012). For this multilocus analysis, loci, 
which contained sequences for at least five different species were chosen. In total, we 
included eight genes in the study - four mitochondrial (12S rRNA, 16S rRNA, d-loop, mt-
cyb) and four nuclear (irbp, c-myc exon 2, c-myc exon 3, rag1). Species composition in gene 
data sets was partially overlapping. Overall, our dataset consisted of two outgroup species 
and 19 Sciurini species of all currently recognized genera (Microsciurus, Rheithrosciurus, 
Sciurus, Syntheosciurus, Tamiasciurus). 

2.2. Alignments 

Sequences were aligned in Geneious software v4.7 (Biomatters Ltd., Auckland, New Zeland; 
Drummond et al., 2009). Alignments were executed in fasta format. As alignment in nexus 
format is needed in Bayesian analysis, we transformed fasta files to nexus files in BioEdit 
program v7.1.3 (Hall, 1999). For examples of the sequence formats see Martínková (2008). 

2.3. Bayesian inference of phylogeny 

Bayesian inference of phylogeny was used for estimation of phylogenetic relationships. We 
analysed each locus separately in MrBayes v3.1.2 (Huelsenbeck and Ronquist, 2001).  
Bayesian analysis in phylogeny is based on the posterior probability of a tree, which 
indicates the probability that the calculated tree is correct (Huelsenbeck et al., 2001).  

MrBayes employs Markov chain Monte Carlo (MCMC) in determination of posterior 
probabilities. According to Cummings et al. (2003), MCMC can be described as "an 
algorithm-led trip through parameter space, where parameter space is defined in terms of 
topology, branch lengths, substitution rates, and other parameters". Each suggested 
parameter modification can be accepted or rejected depending on the change in likelihood 
(e.g. Moravec and Martínková, 2012).  

In this study, we used the standard values of posterior probability considered significantly 
supported, which means values equal or higher than 0.95. Substitution models were 
determined according to Bayesian information criterion in ModelTest v3.7 (Posada and 
Crandall, 1998).  

Commands for analysis in MrBayes had following form: 

#NEXUS 

begin mrbayes; 

log start filename=filename.log replace; 

set autoclose=yes nowarn=yes;  

lset nst=6 rates=gamma; 
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mcmcp ngen=2000000 relburnin=yes burninfrac=0.3 
samplefreq=1000 printfreq=500 nchains=5 nruns=2 temp=0.1 
swapfreq=3 nswaps=1; 

mcmc; 

sump burnin=600; 

sumt displaygeq=0.5 burnin=600; 

log stop; 

end; 

Command lset defines the substitution model. In this case, nst=6 indicates the GTR 
model with rate matrix with six parameters, and rates=gamma means that substitution 
rates vary between positions in the DNA sequence and the variation is modelled with a Γ 
distribution. 

Command mcmcp adjusts parameters of the MCMC. To optimize chain convergence, we ran 
five Markov chains Monte Carlo (nchains=5) for 2 million generations 
(ngen=2000000), sampling trees every 1000th generation (samplefreq=1000). Chain 
heating parameter was set to 0.1 (temp=0.1), one chain swap was attempted every 3rd 
generation (swapfreq=3). Relative burn-in was used (relburnin=yes) and the burn-in 
fraction was 30% (burninfrac=0.3). 

2.4. Supermatrix approach 

Supermatrix analysis (also known as total evidence or combined analysis) is based on a 
matrix, consisting of all character data from all included taxa. All characters are then 
analysed simultaneously (de Queiroz and Gatesy, 2007). The advantage of the supermatrix 
approach is the preservation of data and utilization of all evidence. In comparison, in the 
supertree analysis some part of the character information is lost through combining data sets 
(Moravec and Martínková, 2012).  

2.5. Supertree approach 

Supertrees result as a conjunction of source trees. Gene trees are estimated independently 
and consequently the information from these gene trees is combined by various methods of 
supertree reconstruction. Supertree approach facilitated construction of large phylogenies 
and research of evolutionary history for higher taxonomic units. 

Table 1. Methods of supertree construction used in this study 

Method Program Program reference 

Standard MRP r8s Sanderson, 2003 
 PAUP* Swofford, 2002 
Purvis-MRP r8s Sanderson, 2003 
 PAUP* Swofford, 2003 
MinCut Supertree Page, 2002 
Modified MinCut Supertree Page, 2002 
SuperTriplets SuperTriplets Ranwez et al., 2010 
Veto PhySIC_IST Scornavacca et al., 2008 
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We used six methods of supertree reconstruction: standard matrix representation with 
parsimony (MRP; Baum, 1992; Ragan, 1992), matrix representation with parsimony 
modified by Purvis (Purvis-MRP; Purvis, 1995), MinCut (Semple and Steel, 2000), modified 
MinCut (Page, 2002), SuperTriplets (Ranwez et al., 2010) and veto supertree method 
(Scornavacca et al., 2008; Table 1). 

2.5.1. Standard matrix representation with parsimony and Purvis modification 

Standard MRP and Purvis-MRP are methods based on translating phylogenetic trees to a 
binary matrix. According to Baum and Ragan (2004) each tree is considered as "a 
hierarchically ordered collection of nodes". Information about nodes on a source tree is 
expressed in the form of additive binary coding. Accordingly, nodes are treated as binary 
matrix elements and the tree topology is represented by the matrix. Matrices of all source 
trees are integrated to form a single matrix of binary elements (Baum and Ragan, 2004). The 
composite matrix is subsequently analyzed with parsimony. 

Modification of MRP by Purvis (1995) is aimed at elimination of redundant data, which is 
brought into analysis by additive binary coding. Purvis suggested adapted coding, which 
scores all taxa beyond sister relationship to examined node as missing, instead of 0 (Bininda-
Emonds and Sanderson, 2001). 

In this work, we used program r8s v1.70 (Sanderson, 2003) for matrix construction and 
PAUP* v4b10 (Sinauer Associates, Inc., Sunderland, MA; Swofford, 2002) for maximum 
parsimony analysis. 

Data for r8s and PAUP* analysis should be in nexus format. 

Data entry for r8s was in following form: 

#nexus 

begin trees; 

tree 1 = (A:0.104,B:0.043,...); 

tree 2 = (A:0.176,D:0.087,...); 

tree 3 = (A:0.042,B:0.003,...); 

end; 

 

begin r8s; 

mrp method=baum; 

mrp method=purvis; 

end; 

Data entry for PAUP* was in following form: 

#nexus 

begin paup; 

set criterion=parsimony increase=no maxtrees=10000; 

hsearch nreps=10 addseq=random swap=tbr; 
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contree all/ majrule=yes percent=50 treefile=filename.con; 

end; 

We adjusted paramters to 10 heuristic search replicates (nreps=10), TBR branch swapping 
algorithm (swap=tbr), 10000 swapped trees as maximum number (maxtrees=10000) 
and final tree constructed as 50% majority rule consensus (majrule=yes percent=50). 

2.5.2. MinCut and modified MinCut 

These methods translate source trees into a graph. In the graph, all branches have weights, 
which are determined according to the number of their appearances in source trees (Page, 
2002). Consequently, branches with too low weight are eliminated from the graph. This 
elimination is termed as minimum cut, as it cuts branches with minimum weights. The 
supertree is formed from the graph after the minimum cut. MinCut is one of the methods that 
run in polynomial time, hence it is quick to compute even for very large datasets. 

Main point of modified MinCut method (Page, 2002) is to prevent the uncontradicted 
branches from source data to be cut. This adaptation also helps to solve the influence of size 
of source trees. 

MinCut and modified MinCut analysis were performed in the Supertree software (Page, 
2002). 

2.5.3. SuperTriplets 

SuperTriplets (Ranwez et al., 2010) is another method running in polynomial time. This 
algorithm calculates the triplet median supertree. Analysis starts with partitioning the source 
trees into simple triplets. Triplets have weights depending on the number of source trees 
including it. Weights help assess which triplet is the most frequent among source trees. 
Another step is agglomerative procedure generating the initial supertree. SuperTriplets then 
utilises swapping subtrees to check if any other supertree represents source trees better until 
any better tree cannot be found (Ranwez et al., 2010).  

We used SuperTriplets program available online (Ranwez et al., 2010). 

2.5.4. Veto method 

Other types of supertree construction methods are veto methods. These are based on a simple 
condition that the supertree has to be consistent with all source trees. In other words, 
supertree cannot contain a clade contradicted by any of the source trees. As a result, veto 
supertrees tend to be unresolved, with higher number of multifurcations. The supertree is 
constructed in a stepwise manner by gradually adding leaves to the initial tree of two nodes 
(Brinkmeyer et al., 2010). 

We constructed veto supertree in PhySIC_IST (Scornavacca et al., 2008). In comparison with 
the original PhySIC program, this modification tries to reduce the abundance of unresolved 
relationships by elimination of conflicting taxa. Taxa producing conflicts during supertree 
construction are discarded to avoid excessively unresolved phylogenies. PhySIC_IST 
includes an additional tool, source tree correction, which edits source trees in conflicting 
regions before analysis. We applied the version with and without source tree correction. 
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3. Case study 

Sciurini squirrels represent tree squirrels inhabiting forests of Eurasia, North America and 
South America. These sciuromorph rodents constitute 37 species distributed into five genera: 
Microsciurus, Rheithrosciurus, Sciurus, Syntheosciurus and Tamiasciurus (Wilson and 
Reeder, 2005). In Eurasia, only four of the taxa can be found. The highest diversity rates are 
in Central and South America, which Sciurini entered only three million years ago (Mercer 
and Roth, 2003). 

Origin of the tribe Sciurini is in the Northern Hemisphere according to the fossil record 
(Emry and Thorington, 1982; Emry et al., 2005) but it is still unclear if Sciurini squirrels 
diverged in Eurasia or North America. Oshida et al. (2009) proposed that the genus Sciurus 
originated in Eurasia based on a phylogenetic analysis of eight Sciurini taxa.  

The presented study utilised all recently available genetic data to estimate phylogenetic 
relationships inside the Sciurini group (Pečnerová and Martínková, 2012). We applied two 
alternative approaches, supermatrix and supertree approach. By means of such a complex 
analysis, we confirmed the paraphyly of Sciurus and disagreement between current 
taxonomy and phylogeny. At the same time, resolved phylogenetic history helped us better 
understand the evolutionary pathways of Sciurini tree squirrels. 

3.1. Gene trees 

In total, 9065 base pairs (bp) of eight loci and 19 species were analyzed in this study. The 
gene trees contained at least five species, and the largest dataset had DNA sequences for 15 
species (Pečnerová and Martínková, 2012). 

Most of the gene trees shared a single pattern with Sciurini split into two evolutionary 
lineages, first containing all Tamiasciurus species and the second including representatives 
of all other genera. Inside the latter group, the Old World taxa occupied basal positions and 
the New World clade was monophyletic according to five gene trees. Relationships inside of 
the New World group were poorly resolved, but two trees supported monophyly of 
Neotropical taxa (Pečnerová and Martínková, 2012). 

3.2. Supermatrix results 

Bayesian analysis of the concatenated data set yielded a tree with similar trends as described 
for gene trees.  

3.3. Supertree results 

Despite deviations in supertrees generated by different methods of supertree construction, 
there were the same tendencies (Pečnerová and Martínková, 2012). Tamiasciurus at the base 
of the tree, followed by a group of Palearctic/Indomalayan taxa and the monophylum of 
Nearctic and Neotropical taxa. Differences between supertrees consisted of a diverse 
placement of species inside the Palearctic/Indomalayan cluster and the Nearctic/Neotropical 
cluster. Supertrees produced by SuperTriplets, modified MinCut, standard MRP and veto 
without source tree correction were the most consistent with this pattern and most resembled 
each other. Due to the character of veto method, some species were excluded from the veto 
supertrees.  

3.4. Relationships of Sciurini tree squirrels 

Both approaches of phylogenetic analysis revealed similar tendencies, corresponding with 
the biogeographic distribution of Sciurini squirrels (Pečnerová and Martínková, 2012; Figure 
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1). Taxa were grouped according to zoogeographic regions they inhabit, with gradual 
divergence of species from Eurasia, North and Central America and South America. In terms 
of their current taxonomy, the genus Tamiasciurus was located at the base of tree at 
supermatrix and supertree approaches. Genera Rheithrosciurus, Microsciurus and 
Syntheosciurus grouped with species from the genus Sciurus. 

Figure 1. Schematic representation of Sciurini tree squirrel phylogeny with branch tips 
located at approximate centroids of geographic distribution of the species 

 

Interestingly, Sciurus spread through North America to tropical regions of Central and South 
America, where it diversified into many species, generating the peak of its diversity in the 
south. Sciurini tree squirrels entered South America only three million years ago. This high 
diversity in such recently formed group might be produced by high diversification rate as 
proposed by Roth and Mercer (2008). 

Herewith, we demonstrated that both supermatrix and supertree approaches are consistent in 
assessing phylogenetic relationships from datasets with large content of missing data with 
good resolution. The supertrees that differed from other results use methods that are in 
general intended for removing conflict in source data. In our data, this paradoxically 
introduced patterns in the trees that were unique for each method. This might indicate that 
for datasets with roughly consistent signal in gene trees, utilising maximum amount of 
information and thorough analysis might be the optimal approach. 
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Abstract 

To reveal phylogeny of sparsely sequenced taxa, standard methods could not be 
successfully used due to patchy character of data and new methods had to be 
developed. We summarize such methods and present their functionality on phylogeny 
of Arvicolini voles. Analyzing tree space with terraces, we have found that supermatrix 
approach is superior to supertree approach in extracting signal from data and 
determining a resolved and well-supported phylogeny. The most widely used program 
for Bayesian phylogeny inference fails to determine the correct lengths of branches in a 
large supermatrix with a lot of missing data, it still successfully determines the true tree 
topology. 
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1. Introduction 

DNA sequence analysis greatly advanced with founding and world-wide usage of sequence 
databases GenBank, EBI and DDBJ. With free access to sequences, many new analyses were 
possible on a much greater scale. This brought new type of an incompleteness problem. 
Sequences used now more likely originated from different studies with different aims, with 
few genes sequenced for some species and many for others. Standard phylogenetic analysis 
of single a gene could either use only a subset of available data or it could not produce a 
resolved tree. One way to solve this problem is to obtain new sequences - this is an 
expensive and laborious approach might be even impossible sometimes in some cases. On 
top of that, genes are functional units that are adapted to serve a specific function. To 
maintain the function of gene products under similar selective pressure, gene products would 
be more similar to each other and the genes converge. Thus, their phylogeny may not match 
the true tree and analyses of multiple genes are necessary. New data obtaining methods were 
developed. Through usage of those methods, new research topics could be addressed despite 
seemingly bare data matrix. Hereby, we present a multilocus phylogeny of Arvicolini voles 
inferred from a data matrix of eight genes that contained 72.8% missing data (Martínková 
and Moravec, in press). 

2. Building trees from multiple loci 

Generally, there are two ways how to build a tree from multiple loci, using a supermatrix (de 
Queiroz and Gatesy, 2007) or a supertree (Bininda-Emonds, 2004). Supertree approach is a 
type of metaanalysis. Trees are constructed separately into gene trees compared and 
assembled into the species tree. It does not work directly with characters, but with whole 
trees. This makes the method ideal for building supertrees from published trees, be it either 
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trees built from molecular data, trees built from morphological data or combined trees and 
other supertrees. 

Figure 1. Diagram of Supertree and Supermatrix approaches work-flow. 

 

The alternative supermatrix approach directly works with characters from all loci. Sequences 
are aligned separately for each locus and their alignment is concatenated, creating a large 
data matrix on which standard phylogeny methods can be applied. Although computationally 
intensive, this approach can amplify weak signal from multiple loci to solve complicated 
relationships. 

The supermatrix approach has several advantages over the supertree approach. In a supertree, 
some information is lost, when data are summarized into gene trees. Information from each 
tree has same weight, although original data might not support this. Estimating weight of 
each gene tree ad-hoc could then be inaccurate. Serious disadvantage of supermatrix analysis 
lies in its high computational difficulty. Data consisting of several hundreds of species and 
dozens of genes would require enormous computational capacity to process. Future of such 
giant projects, such a Tree of Life project (http://tolweb.org), thus consists in combining 
those two methods. With divide and conquer approach (Bininda-Emonds, 2010), giant 
datasets are partitioned into several smaller supermatrixes, each consisting of multiple loci, 
and, computed trees are then summarized with the supertree approach, exploiting 
supermatrix precision and supertree lower computational needs. 

3. Computing from supermatrix 

The most robust methods of computing phylogenies from the supermatrix are Maximum 
Likelihood (ML) and Bayesian inference (BI). Although they are mathematically quite 
similar, the likelihood function is a component of the Bayes theorem, their implementations 
differ greatly. 
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In summary, ML algorithm starts with a starting tree, be it random, user input or computed 
by fast and dirty method, and searches similar topologies by exchanging subtrees and 
maximizing tree likelihood with respect to nuisance parameters, such as branch length. The 
best tree is then the tree with the largest likelihood (Schmidt and Haeseler 2009). 

The BI computes probability of a tree, a scenario, a hypothesis or values of parameters 
directly with the Bayes theorem (Ronquist et al., 2009). Let τ be a vector of parameters 
(topology, branch lengths, substitution rates etc.) defining the tree under a certain model M, 
T be tree/parameter space and D data. Posterior probability of the tree τ given data D given 
model D is calculated as: 

 

 

Because the parameter space is continuous, it is sampled by Markov Chain Monte Carlo 
(MCMC), a Metropolis-Hasting variant (Ronquist et al., 2009), which is sometimes 
improved with Metropolis-coupling (forming MCMCMC or MC³) (Huelsenbeck and 
Ronquist, 2003). MCMC searches the parameter space, making small steps and accepting 
them if the new position has higher probability than the current one, otherwise it remain in 
place. The algorithm could be described as follows: 

1. Start with a random tree τi 

2. Draw new a state τj from arbitrary chosen symmetric proposal distribution Q(τj| τi). 

3. Probability R of accepting new the state is: 

 

1. Generate a uniformly distributed random variable U from interval (0,1). If R >U, 
accept new the state. 

2. Repeat from the step 2. 

Each accepted state becomes a sample. After a sufficient number of samples, the sample 
distribution should be a good estimate of the sampled distribution. Metropolis-coupling 
improves computational speed and lowers risk, that the chain will stay in a local optimum, by 
running several MCMC with different probability of accepting the new state, called 
temperature, swapping it each n states between chains. Chains with higher temperature 
would accept the new state even if it is worse than the current state, which gives the chain 
ability to escape local optima and to search the parameter space quickly. Colder chains are 
more likely to stay and search local space for potential global optimum. Several runs are 
usually made to ensure that the stationary distribution was reached. Worth mentioning, that 
in complicated models with many parameters, BI is highly computationally intensive. 
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Apart from a likelihood, which comes directly from data, the Bayes theorem includes another 
important component, a prior. Prior is information about a set of hypotheses or values of 
parameters we have before analyzing data. It is represented with probability density function 
for a continuous prior or probability mass function for a discrete priors and sampled with 
MCMC. In BI uninformative priors are used, so likelihood will easily dominate them.  

In the past few years, when analyses of large supermatrix problems became more common, a 
new problem emerged. The default exponential prior used in most widely used BI phylogeny 
program MrBayes was shown to be too informative. Additionally, the default starting branch 
length is set to be 0.1, which causes MCMC to spend too much time in prior-elevated local 
optima. This results in longer branches across the whole tree. Fortunately, even in analyses 
with branch lengths problems, the BI usually infers the true topology - the long branch 
problem (Marshall, 2010). It was suggested, that partitioning branch lengths between 
external branches (carrying tree leaves - taxa) and internal branches should solve this 
problem (Yang and Rannala, 2005) and a new compound GammaDirichlet prior was 
suggested (Rannala et al., 2012) and implemented (Zhang et al., 2012). Prior serves as 
important optimizing factor and new priors are constructed to better demonstrate our 
ignorance about current dataset but hold enough information about very process of origin of 
data, molecular evolution. 

4. Assessing tree support 

One of the major questions after using an analytic method is: How good my results are? The 
most popular method for distance, maximum parsimony and ML methods is the bootstrap. 

For BI the support for bipartitions is given by their posterior probability. 

Bootstrapping relies on analyses with resampled data. The data are resampled by randomly 
picking columns from the data matrix allowing repetition, until the same length as original 
data matrix is reached. The bootstrap trees are constructed from the resampled data matrices. 
Bipartitions of the original tree are then evaluated with the percentage of the bootstrap trees 
that contain bipartitions of the same clade, creating the bootstrap score. Bootstrap score over 
70% is considered significant. Original claim for 95%, assessed from confidence interval 
(Felsenstein, 1985), proved to be exaggerated because of conservative character of 
bootstrapping (Hillis and Bull, 1993). Three interpretations of bootstrap are possible: type I. 
error, repeatability and accuracy; with accuracy being the most popular (Soltis and Soltis, 
2003). 

In BI with posterior joint probability already sampled, posterior probability of each 
bipartition can be computed as proportion of sampled trees that have the same bipartition as 
optimal tree (Ronquist and Mark, 2009). 

Note that the Bayesian posterior probability is not comparable between different trees or 
analyses, as it is conditional on data and model (equation 1). The same is true for the 
bootstrap values, although the model and data condition is not explicitly stated. 

There is another way of assessing robustness of analysis that was developed for multilocus 
analyses with large amount of missing data. Let's have an optimal, fully resolved tree 
topology from ML or BI analysis of multiple loci. Then, restricting this tree to taxa from 
each locus we get a subset tree defined by this locus. All trees generated by subset trees form 
terrace (Sanderson et al., 2011) and have the same ML or BI score as optimal tree. If the best 
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tree belongs to a small terrace, to a small group of trees with identical optimality score, or is 
even unique, data provided significant signal and analysis was able to identify it. 

5. Case study 

Arvicoline voles (Rodentia, Arvicolini) represent a group of rodents that is often used as a 
model for molecular genetic studies (e.g. Martínková and Moravec, in press). Extensive 
DNA sequence data is available for multiple genes and different taxa sets. Arvicoline voles 
first appeared in the fossil record in Pleistocen boundary, and over along the last 2 millions 
years, they diverged into one of the most speciose mammalian group. Their morphological 
similarity even for distantly related species and rapid karyotype rearrangement hinder 
classification. The phylogeny reconstructed from a single gene sequence dataset would be 
limited by the very rapid diversification that could be represented as incomplete lineage 
sorting or lack of resolution due to the short time. Multilocus phylogeny is necessary. Patchy 
character of sequenced species and genes makes them an ideal example for presented 
methods. 

5.1. Material and Methods 

Sequences of eight loci for a total of 74 species of voles from the Arvicolini tribe were 
downloaded from GenBank, and sequences for each locus were aligned using Geneious 5.4 
(Drummond et al. 2011). Alignments were concatenated into a supermatrix containing 72.8% 
missing data. Supermatrix was analyzed with BI implemented in MrBayes 3.1 (Ronquist and 
Huelsenbeck, 2003) and with ML implemented in RAxML 7.2 (Stamatakis, 2006) 
Sinvididual gene alignments were analyzed with BI, and the computed trees were combined 
into supertree with the SuperTriplets package (Ranwez et al., 2010). Robustness of analyses 
was estimated with terraces using the PhyloTerrace package (Sanderson et al., 2011). 

5.2. Results 

Inferred supermatrix phylogeny was well supported for BI and ML analyses. Both concurred 
on similar tree topologies. Significantly, phylogeny was better resolved than in previous 
studies, and we were able to estimate phylogenetic relationshops of undersampled taxa. 
Further, the terrace analysis of the BI tree topology placed the optimal tree on a unique 
terrace. 

The SuperTriplet supertree agreed with the BI and ML analyses on basic relationship. Its 
terrace analysis found 15 alternative topologies with the same tree likelihood. This is still a 
very small terrace. Small terraces are retrieved probably due to the fact that cytochrome b 
(cyb)  was present for 68 species and served as a scaffolding. 

Long branch problem manifested here as well, with BI credible interval of branch length 
being 7.89-15.12 and ML estimate equal to 3.86. We have tried to optimize the analysis with 
modified MrBayes with compound GammaDirichlet prior (Zang and Rannala, 2012), but 
stationary distribution was not reached. 

5.3 Conclusion 

We have described methods for the inference of large phylogeny problems with high amount 
of missing data and demonstrated their utilization on phylogeny of Arvicolini voles. 
Understanding the presented methods is crucial for optimizing their parameters and 
achieving sensible results. Although emerging negative attributes of complicated analyses 
designs could not be predicted at the moment, common practice of using several different 
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methods and simulation studies should reduce these problems and enable verification of 
results. 
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Abstract 

The goal of genetic association studies is to indentify DNA variants which contribute to 
risk of disease. In my work I focus on population association studies in which unrelated 
individuals of case-control disease state are typed at a number of single nucleotide 
polymorphisms (SNPs). The aim of this study was to create the review of statistical 
analyses testing association based on single SNP and consequently move on to the tests 
of multiple SNP. I applied studied methods to test association between SNPs and result 
of direct microscopy (DM) in Murgese horses that detect presence of disease-causing 
parasites. Analysis results point at SNPs that could cause positive result of DM. 
Unfortunately, statistical significance was not confirmed for most of them. 

Key words  
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1. Introduction 

Genetic association studies aim to detect an association between polymorphisms and a trait. I 
concern over SNP as a type of polymorphism, and case-control state as a kind of trait. The 
cases have studied disease and the controls are independently sampled from the general 
population without disease. SNP is defined as a single base pair change in the DNA sequence 
with frequency of at least 5% within population. The advantage of genetic association studies 
is that it can detect genetic variants with small effect on disease outcome and thus it enables 
to understand the etiology of complex diseases (Risch and Merikangas, 1996). 

In practical part of my work I tested association between SNP and positive (case) or negative 
(control) result of DM in Murgese horses that detect presence of parasites Theileria equi and 
Babesia caballi. These parasites damage blood cells and cause disease piroplasmosis (Homer 
et al., 2000). Clinical signs of the disease are highly variable.  

2. Methods 

2.1. Data quality control 

I evaluated the validity of Hardy-Weinberg equilibrium (HWE) for horses with negative 
result of DM. Deviations from HWE in the population can indicate inbreeding, stratification 
and error in genotyping for example (Balding, 2006; Lewis, 2002). I counted linkage 
disequilibrium (LD) which represents correlation between SNPs. High correlation could 
present a problem for multivariate analysis when preferring SNP, which is in LD with the 
causal one. 

2.2. Tests of association: single SNP 

Testing whether there is an association between genotypes and result of DM is equivalent to 
test the dependence in contingency table (Balding, 2006). For this testing I applied Fisher’s 
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exact test which detects all departures from the independence. It is reasonable to assume that 
horses having genotype of two copies of at-risk alleles are more likely to be positive in DM 
than horses having genotype with one or none at-risk allele. Cochran-Armitage trend test 
(CATT) tests this trend in relative risks (Armitage, 1955). It assigns score to genotype which 
can be changed to correspond to different genetic models. Since I do not know the true 
genetic model of inheritance, I prefer robust tests. I applied MAX3 accounting p-value for 
maximum of test statistics CATT for recessive, additive and dominant models (Freidlin et 
al., 2002). In case of complex diseases, SNPs contribute to disease roughly additive which is 
why I applied CATT for additive model (Balding, 2006). These tests detect marginal effect 
of SNP on result of DM. I visualized the results of tests by Q-Q graph of p-values with 95% 
confidence interval (CI). If we observe p-values in this CI, we can say they come from 
uniform distribution, and thus we cannot reject the null hypothesis of no association 
(Quesenberry and Hales, 1980). Correction for multiple testing was provided by Fisher’s 
combination and Bonferroni correction. For the SNPs with detected influence on the result of 
DM I analyzed dominant, recessive and overdominant model of inheritance for the minor 
allele. I summed genotype counts in the contingency table and applied Fisher’s exact test. 

2.3. Tests of association: multiple SNPs 

SNPs can influence the result of DM only in combination with genotype in different loci. In 
the next step I applied two non-parametric methods who test interaction between SNPs.  

2.3.1. “Set association” 

 “Set association” combines information from multiple SNPs but rely on marginal effect of 
SNPs (Ott and Hoh, 2003). This method creates sums from the most extreme test statistics 
CATT with score for the additive model of inheritance. Based on permutations p-values for 
these sums are accounted. As a number of SNP in sum increase, the p-values for sums tend 
to decrease. When we add to the sum SNPs that do not influence result of DM, p-values tend 
to increase. The global p-value is accounted for minimum of p-values.  

2.3.2. Multifactor dimensionality reduction (MDR) 

MDR is based on 10-fold cross validation, which divides the data into 10 equal parts (Moore, 
2004). 9/10 of the data is used to develop a model (combination of SNPs) and the rest 1/10 of 
the data is used to evaluate its predictive ability. MDR assigns each combination of genotype 
to high risk or low risk group and that is how it reduces the multifactor dimensionality. High 
risk is assigned when the ratio of horses with positive and negative DM exceeds the total 
ratio. This new variable is evaluated for its ability to classify (training accuracy) and predict 
result (testing accuracy) of DM. The software just evaluates specific model on the basis of 
balanced accuracy, which represents mean of sensitivity and specificity. To minimize the 
impact of the current distribution of data I applied MDR ten times and averaged out the 
results. 

3. Results 

Initially, I excluded one SNP because of low allele frequency. I checked validity of HWE for 
horses with negative result of DM and excluded high LD between studied SNP. Analysis was 
performed on the complete dataset and on the dataset with horses older than two years. This 
limit was based on ROC curve analysis and aimed to exclude the horses who had not met 
with parasite yet and might be affected by maternal antibodies. For tests on single SNP I did 
not detect statistically significant results so I evaluated SNPs with p-value less than 0.05 as 
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interesting. Table 1 summarizes results of the analysis. “Set association” detected minimum 
of p-value for the second sum into which contribute test statistics of MAFK BseRI and 
IL12p40. In case of dataset for horses older than two years, the method had detected the 
smallest p-value for the first sum, TLR2 BsaHI. Statistical significance was not confirmed. 
MDR detected interaction between MAFK BseRI, TLR3 (HpyCH4III) and IL12p40 for complete 
dataset, and TLR2 BsaHI and TLR3 (HpyCH4III) for the dataset with horses older than two 
years. There are only statistically significant results of testing genetic model of inheritance in 
the last column of table 1. 

Table 1. SNPs with detected effect on result of DM 

 
Fisher’s exact test/  

CATT/ MAX3 
„Set association“ MDR 

Model of 
inheritance 

Complete dataset (N=101) 

PRKAR1B BmgBI ✓   Recessive 
MAFK BseRI ✓ ✓ ✓ Dominant 

TLR3 (HpyCH4III)   ✓  
IL12p40 ✓ ✓ ✓  

Dataset for horses older than two years (N=76) 

TLR2 BsaHI ✓ ✓ ✓  
TLR3 (HpyCH4III)   ✓  

4. Conclusion 

For testing of single SNP effect, I cannot tell which one of tests performs better. Results of 
Fisher’s exact test are consistent with results of MAX3. We can see from Table 1 effect of 
TLR3 (HpyCH4III) was detected only during analysis of interaction and effect of PRKAR1B 
BmgBI only during analysis of marginal effects. In conclusion, I have to emphasise that 
results of analyse are influenced by small sample size (N=101). SNP from Table 1 should 
enter into further studies with sufficient sample size where their influence would be 
confirmed or rejected. Insignificance of the results can also be caused by the strict correction 
for multiple testing. In the future I would like to study a correction based on Bayesian static. 
These methods correct p-values on the basis of prior probability of true association of SNP 
with disease. 
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Abstract 

Formal techniques for analysis and verification of systems are increasingly used in 
natural and systems sciences. Application of this approach in the new areas requires 
new methods. The master’s thesis focuses on reasoning about complex biological 
signals. Existing approaches based on temporal logics are reviewed and a new temporal 
logic extending the Signal Temporal Logic is introduced. A polynomial monitoring 
algorithm for piecewise linear signals is introduced and implemented in MATLAB with 
the Multi-Parametric Toolbox. 
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1. Introduction 

Recent development of computers made it possible not only to acquire, store and process 
gigantic amount of data, but also to make models of natural processes and study them in 
silico. The rapid development of fields like systems biology, computational biology or 
synthetic biology creates a demand on tools for automatic performing and evaluation of such 
experiments. 

One of these tools is temporal logic, formalism for description and reasoning about 
phenomena taking place in time. It originated in philosophy and found its use in computer 
science to formal description and verification of technical processes. Nowadays, these 
techniques are increasingly used for formal analysis of natural processes (Calzone et al., 
2006; Rizk et al., 2008). The usage in this field places new demands on temporal logics. The 
thesis deals with a class of temporal logics suited to reasoning about nontrivial real-time 
processes. As a model of these processes, various types of oscillations (understood in broader 
sense) are considered, because oscillatory behaviour plays a crucial role in nature (Hess, 
2000). 

The main contribution of the thesis is an extension of the Signal Temporal Logic (STL) 
(Maler and Nickovic, 2004). This new temporal logic (denoted STL*) enables expressing 
more complex biological behaviour like oscillations. In the thesis, there is also introduced a 
monitoring algorithm for STL* formulae working in polynomial time. The theoretical 
description of the algorithm is supplemented by a prototype implementation evaluated on a 
biological case study. 

2. Methods 

Formulae of the logic STL* are interpreted over real-valued continuous signals (functions 
from dense time domain to real values representing quantities of the investigated system, i.e., 
concentrations of species, abundances or other measurable attributes). These signals are 
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defined similarly as in (Maler and Nickovic, 2004), but are restricted to a linear form to 
enable efficient monitoring (i.e., determinig the satisfaction of a formula over a continuous 
signal). Basic properties of continuous signals are expressed via atomic predicates (Boolean 
functions form signal variables to the set of truth values {true, false}). These atomic 
predicates constitute  atomic propositions in STL* formulae.  

The logic STL* extends STL by adding a unary temporal operator * (called freeze operator) 
which freezes the values of the signal in some time instant. These values are then accessible 
later in other parts of the formula. This operator enables expressing of properties like “the 
value of the variable x is nondecreasing on some interval”, “the variable x copies the values 
of the variable y with a delay of 4 seconds” or “the variable x is bigger than y was 5 time 
units ago”. These properties cannot be expressed in the logic STL without using some extra 
information about the signal. 

The monitoring algorithm for STL* formula was inspired by (Calzone et al., 2006). The idea 
is to construct a parse tree of the formula and check the satisfaction in a bottom-up manner, 
starting with construction of satisfaction sets (i.e., sets of the time instants and frozen time 
instants in which the formula is satisfied) for atomic predicates and continuing with 
construction of satisfaction sets for compound formulae on higher levels of the parse tree. 

The monitored signals are supposed to be piecewise linear, which does not limit the 
expressivity of the logic (every measurement or output of a numerical simulation can be seen 
as a piecewise linear signal). Such an assumption in combination with linearity of atomic 
predicates enables us to express the satisfaction sets for atomic predicates as polygons in 2D 
space. Construction of the satisfaction sets for higher formulae is then performed as 
polygonal operations, for which efficient algorithms exist (de Berg et al., 2008). 

3. Results 

A prototype of the introduced monitoring algorithm was implemented in software MATLAB 
(Matlab, 2011). For the polygonal operations, the Multi-Parametric Toolbox (MPT) 
(Kvasnica et al., 2004) was used. Performance and functionality of the algorithm were tested 
by a series of tests and demonstrated on a biological case study.  

A system of three transcriptional repressors built into bacteria Escherichia coli (Elowitz and 
Leibler, 2000) was analysed by the means of STL* logic. I was able to successfully prove the 
desired properties of the modeled system e.g. sustained oscillations. The parameters of the 
model for which this behaviour occurs could be automatically estimated. It would be also 
possible to verify the oscillatory behaviour in the real world system, i.e., bacteria, if I had the 
access to the measured data. 

4. Conclusion 

In my thesis, I have introduced an extension STL* of the logic STL and proposed a 
monitoring algorithm working in polynomial time for this new temporal logic. This 
algorithm takes a STL* formula and a signal and checks if the formula is satisfied over the 
signal. It works by transforming the problem to series of polygonal operations in plane. 

The theoretical time complexity of the algorithm (O(kn4), where k is the length of the 
monitored formula and n is the number of points of the signal) was confirmed by  tests and a 
case study. However, due to inefficiency of the Multi-Parametric Toolbox (MPT) used for 
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polygonal operations, the computations took a long time (hours for signal of 100 points). It 
was probably due to the fact that the MTP is not specialised for this operations in plane. 

As a straightforward direction of future development, specialised algorithms for polygonal 
operations could be implemented. This would significantly fasten the monitoring algorithm. 
Next step could be the introduction of a measure of robustness (Donzé and Maler, 2010) to 
quantify the degree of satisfaction of a formula over a signal. This would improve the 
utilization of STL* in tasks like parameter estimation. 

Another contribution of this thesis can be seen in the field of knowledge representation. The 
logic STL* can be used for succinct representation of knowledge e.g. in signals or systems 
and their behaviour. Representation in a form of logic formulae can be utilised in different 
fields of artificial intelligence (Baral, 2003). 
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Abstract 

The aim of this study is to demonstrate the dynamics of changes in the expression of 
genes that are specific for BRAF mutation in colorectal carcinomas. The study of 
changes in gene expression in the early phases of tumour development can help us to 
understand the causes of molecular changes leading to aggressive tumours. 

 I will focus on the available datasets in the different phases of tumour development. 
After that,  I will identify specific genes for the particular  phases of tumour 
development. 

Key words  

BRAF V600E mutation, colorectal cancer, multiple top-scoring pairs, gene signature 

1. Introduction 

Colorectal carcinoma, a big problem in recent years, is the 2nd most occurred tumour and 
Czech Republic is holding sad primacy in the incidence per population. This carcinoma can 
be developing covertly for a couple of months  and can be detected in advanced stage.  

As we know, the mutation of protooncogene BRAF appears in tumours who are not yet 
aggressive, which means that the cancer cells do not metastatize at that time. The 
protooncogene is an important part of the MAPK/ERK pathway, which regulates the growth 
and proliferation of cells. The mutation V600E in particular, where valin is in the position of 
600 amino acid substituted by glutamic acid, leads to the permanent activation of the BRAF 
protein in the pathway. The cell does not respond to physiological regulation and in most 
cases neither to the treatment by inhibitors of EGFR. Patients with this mutation have the 
worst overall survival rate and early detection of tumours with this mutation may increase 
their chances.  

2. Methods 

Datasets containing notes from microchips were gained from the website of National Center 
for Biotechnology Information. For my analysis, it was important to choose datasets that 
contain gene expression from the cells of normal tissue, adenoma and primary stages of 
carcinoma. 

Datasets were normalized by RMA (Robust MultiArray Average) (Irizarry et al., 2003). This 
method is generally used for the normalization of genomic data. After that, I used mTSP 
(multiple Top-Scoring Pairs) (Popovici et al., 2012). This classifier is based on classification 
of 32 pairs of genes. All analyses were done in R software, version 2.13.2. 
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2.1. mTSP 

I had to find out suitable procedure how to compare and classify genes specific for BRAF 
mutated tumours into two classes. The first one was tumour with BRAF mutation and second 
one was tumour without this mutation. Classifier mTSP is able to recognise tumour with 
BRAF mutation with 96% sensitivity and 86% specificity.  

This classifier is based on TSP (Geman et al., 2004) who was created earlier for pairwise 
comparisons of data from microarrays. This method studies the differences between two 
classes by finding the pairs of genes which level of expression is passing from one class to 
another class. 

Selection of pairs of genes (G1, G2) is simply described as a selection of two elements from 
the set of 64 genes with repetition and depends on the order of elements (if G1<G2, then the 
sample is a BRAFm, otherwise it is predicted to be BRAFwt). This way all possible pairs are 
compared and a score as a function of the proportion of samples is computed to each pair 
who was correctly classified. Score was gained from the training data. Pairs were sorted 
according their score and then were selected the pairs whose score was above 0.6. This value 
says that 60% of samples were classified correctly. This threshold is the lowest possible limit 
to ensure robustness and specificity. Then some pairs of genes were eliminated in order to 
create only unique pairs. This means that the gene may occure only at one position in one 
pair. In this way, 32 pairs of genes were created. 

The decision rule uses characteristics of average as the most representative measure. The 
pairs were selected according to certain rules then all of them have to have their share in final 
value. If the expression of one or more of the genes has extreme values, then these values 
should influence the final value. If average of expressions of all genes G1 is lower than the 
average of expressions of all genes G2, then the sample is BRAF mutated, otherwise the 
sample is without BRAF mutation.  

Unfortunately, all 64 genes are not available in the datasets. . This method was also applied 
to datasets containing less then these 32 pairs of genes. Based on this results, it was found 
out that the classifier works reliably with only 8 pairs of genes. 

2.2. Hypothesis testing of score 

Score is calculated from values that you got from mTSP – score is equal to subtraction 
average of expressions of all genes G1 from average of expressions of all genes G2. The aim 
of this testing was to find out if there are statistical significant differences among score of 
normal tissue, adenoma and carcinoma. I could not use gene expression in this case because 
of following relation: if expression of gene 1 is bigger or lower than expression of gene 2, 
they do not show us absolute differences between two genes. 

I used Shapiro-Wilk test to verify the normality of data. According the results, I could not 
reject the null hypothesis that the score of carcinoma has normal distribution. In the case of 
normal tissue and adenoma, I could reject the null hypothesis about normality of data. Due to 
this fact, the selection of appropriate statistical test was constricted on the non-parametric 
tests that can be used when data has asymetric distribution. The fact that these three groups 
of patients are completely independent, played another important role in selection. Based on 
these criteria,  I decided to choose Mann-Whitney test with significance level α=0.05. I used 
two-tailed test because I wanted to know if the score is bigger or lower.  

After that, Benjamini-Hochberg correction for multiple comparison was used.  
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3. Results 

3.1. Specific genes for BRAF mutation in early phases of tumour development 

Figure 1. Barplot for pairs of genes in normal tissue, adenoma and carcinoma 

 

According to mTSP I predicted 7 patients with carcinoma (8.75%), 14 patients with adenoma 
(11.57%) and 3 patients with normal tissue (2.94%) as a BRAF mutated.  

The rule G1<G2 was held for some of the pairs of genes only in some patients who were by 
mTSP classified as BRAF mutated. According to this fact, I defined these genes as specific 
for BRAF mutation. 

Specific genes for normal tissue: SPINK1<PLK2, TSPAN6<RBBP8 and 
ACOX1<KIAA0802.  

Specific genes for carcinoma: PHYH<DUSP4 and APCDD1<FSCN1. Unfortunately I did 
not find out any of these connexion in adenomas. 

3.1. Testing of score 

By comparing group with normal tissue and group with adenoma I rejected the null 
hypothesis, score of population with normal tissue is lower than the score of population with 
adenoma.  In the case of groups with normal tissue and carcinoma I rejected the null 
hypothesis again. The score of population with normal tissue is lower than the score of 
population with carcinoma. But, I did not rejected the null hypothesis by comparing score of 
adenoma and carcinoma. 

4. Conclusion 

In this work, I presented the studies of expression of genes who were found out as a specific 
for V600E BRAF mutated colorectal cancers. I applied mTSP to 7 available datasets, which 
contain notes from microchips. Based on the results, I defined specific pairs of genes for 
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normal tissue, adenoma and primary stages of carcinoma. In the last step of my analysis I 
found out that the score of normal tissue is lower than the score of adenoma and carcinoma. 

 

Figure 2. Boxplot of score 
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Abstract 

The main goal of this study is to create a model of probability distribution of vegetation 
of the seven most important tree species in the area of the southern Siberia. The work is 
built on the theory of the analogy of current vegetation of southern Siberia and glacial 
vegetation of the Central and Eastern Europe.  
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1. Introduction 

This work pursues bioclimatic modelling of vegetation in the area of the southern Siberia. On 
the basis of recent researches (Kuneš et al., 2008) is possible to say that current southern 
Siberian vegetation is similar to the last-glacial vegetation of Central and Eastern Europe. 
According to the newest findings (Barron and Pollard, 2002), it is presumed that in the 
coldest eras of the last glaciation, which occurred before 35 000 – 13 000 years, there grew 
in the Central and Eastern Europe forests. The aim of this study is to create a model of the 
vegetation of the southern Siberia on the basis of data sampled in this area. 

1.1. Current vegetation of the southern Siberia 

The present days vegetation of the southern Siberia is characterised by the three main 
biomes: taiga – mainly forests of pine tree and spruce with sporadic presence of larch, birch 
and some other deciduous trees; tundra – mainly grassland with sporadic presence of stunted 
coniferous and broadleaf wood and common presence of lichens and mosses; extensive 
grasslands. Similar could be vegetation of glacial central-east Europe. 

2. Materials and methods 

2.1. Data 

The dataset contains records of species composition in phytosociological plots on 633 
southern-Siberian localities in two separated areas (mountains Altai and Sajan). It also 
contains information about occurrence of approximately 1 300 species and information about 
environmental variables such as elevation, average temperature (June, January, annual), 
average precipitation (annual, winter, summer) and computed values of radiation. The areas 
of the Altai and Sajan were divided into cca 140000 squares, using the ArcGIS geographical 
information system. Each square was assigned to environmental variable values. 

2.2. Modelling method 

There were modelled the presence of the seven most important tree species: Abies sibirica, 
Betula pendula, Pinus sibirica, Pinus sylvestris, Picea obovata, Larix sibirica and Populus 
tremula.  
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Logistic regression is used as the modelling method. This regression technique is also 
applicable on classification problems. There is modelled probability of presence of some 
event. Dependent variable is binomial and is estimated by the set of continuous or discrete 
predictors. 

One of the main assumptions of regression is absence of correlation among predictors. 
Therefore it was necessary to check if used predictors are uncorrelated.. Strong correlations 
are present among different types of temperatures and also precipitation. Therefore the model 
with only one from those predictors was chosen in each case to prevent correlation problem. 
Radiation and heat were not statistically significant in any model. The probabilities of 
occurrence were calculated separately for tree species from simple logistic equations. These 
probabilities were assigned to all squares by means of the geographical information system 
(ArcGIS) and the potential habitat distribution map for each tree for the entire area of the 
southern Siberia was created. Accuracy of the model was calculated for both Altai and Sajan. 
In every testing model, presences and absences were known. Models were compared for each 
tree species separately. The best is considered the model who has the highest accuracy for 
presence and absence of species.  

3. Results and discussion 

Three different models were made for each tree species. First model is computed on whole 
dataset (Sajan + Altai). The second one is computed on Sajan dataset and tested by samples 
from Altai and finally the third model is computed on Altai dataset and tested on Sajan. 

These models were compared in the next step by the Nagelkerke R2 coefficient (coefficient 
of determination designed especially for the logistic regression similar to the classical R2 
used in the linear regression) and by the accuracy of classification presence and absence of 
species. For computing the accuracy, it is necessary to convert probabilities to values 0 and 
1. This is done by the following rule: value 0 is assigned to localities with probability of 
presence less then middle value of the interval reached probabilities for the model, value 1 is 
assigned to all others. 

Comparison of Nagelkerke R2 and accuracies of classification for each model is presented in 
Table 1. 

Table 1. Accuracy of classification in percentage, P – presence, A – absence and Nagelkerke 
R2 of each model 

Species 

Model (percentage of correct classification) Model (R2) 

Total 
Altai/ 
Altai 

Altai/ 
Sajan 

Sajan/ 
Altai 

Sajan/
Sajan Total Altai Sajan 

P A P A P A P A P A 
Abies sibirica 99 56 53 43 14 38 71 53 97 77 0.48 0.58 0.54 
Betula pendula 99 38 33 51 84 58 61 38 84 80 0.40 0.40 0.43 
Pinus sibirica 87 62 20 67 61 60 27 53 83 67 0.36 0.34 0.36 
Pinus sylvestris 100 29 42 38 76 62 58 47 70 72 0.37 0.58 0.46 
Larix sibirica 96 42 51 47 49 62 75 26 82 69 0.25 0.13 0.34 
Picea obovata 90 46 29 46 86 52 33 40 69 74 0.21 0.17 0.40 
Populus tremula 100 56 50 56 86 42 63 40 90 71 0.32 0.26 0.34 
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From the comparison it is seen that the best model is the one computed on Sajan dataset. 
Model computed for the Altai is the worst one. This can be caused by the smaller range of 
gradient of conditions on Altai area, therefore it is not possible to compute accurate model.  

Potential habitat distribution map for each tree was created using probability. It is shown 
map of occurrence probability of Abies sibirica in the Altai (Fig. 1) area and in in the Sajan 
area (Fig. 2).  

Figure 1. Map of probability of presence 
of Abies sibirica in the area of Altai 

 

Figure 2. Map of probability of presence 
of Abies sibirica in the area of Sajan 

 

4. Conclusion 

Well functioning models of southern Siberian vegetation were made, nevertheless, in the 
consequence of competition of species and similar ecological requirements of modelled 
species, it is not appropriate to nest these models on the glacial Central and Eastern Europe. 
For this purpose will be made models of vegetation types. 
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Abstract 

The aim of this work is to make a summary of the current state of knowledge in the 
modelling of acidification of forest soils in the catchment Lysina, in this issue to select 
the appropriate mathematical model that will be implemented in the software Maple 
and then to make the analysis of the uncertainty on the selected model. In the first part, 
there is introduced the basic overview of processes that cause acidification of forest 
soils. It contains a brief description of selected mathematical models addressing 
acidification of forests and a more detailed description of the model MAGIC, which is 
subsequently used in the work. The last part solves the uncertainty in the selected 
model. This chapter contains a theoretical summary of the uncertainties and sensitivities 
in mathematical models and also application of knowledge to the model that solves the 
acidification of forest soils on catchment level. The result of modelling is that in the last 
twenty years attended to improving soil condition. In the future it is expected further 
improvement in soil condition, but not as pronounced as in previous years. 

Key words  

Mathematical model, acidification, atmospheric deposition, uncertainties, sensitivity. 

1. Introduction 

Nowadays the topic of modelling of acidification of forest soils on river basin level is 
becomes very current environmentally. Acidification is one of the most serious problems of 
soil caused by human activity. This issue is addressed to the Ministry of Environment, along 
with other scientific institutions. 

2. Acidification of forest soils 

Acidification of forest soils is a long and gradual process that has both of natural and 
anthropogenic causes. The air pollutants sulfur and nitrogen oxides are important source of 
hydrogen cations of anthropogenic origin. This source has become one of the most important 
in the 20th century and therefore it is most associated acidification of soils. As a result of 
changes of soil acidity, it is affecting not only the soil chemistry and nutrient cycles, 
but also the entire forest ecosystem (Hruška and Cienciala, 2002). 
 

3. Lysina basin 
Lysina Basin is located in the peak part of the Slavkov Forest. About 10 km away in the 
Sokolov brown coal basin is placed Tisová power. The geological bedrock consists of granite 
with a low content of basic cations and is covered with a layer of brown podsolic soil with a 

( 87 )



thickness of about 1 meter. About 70% of the basin is covered with a spruce monoculture 
and the rest clearings planted with young spruces.  Basin appears to be all the typical signs of 
chronic acidity (Hruška et al., 1996). The study was verified of data from this basin.  

3.1. Modelling of the most development of major ions in the soil 

For modelling of the most important ions in the soil, equations of the model MAGIC were 
used. At first, the past of of individual inos has been displayed and then calculated their rate 
of changes.  

3.1.1. Results of modelling 

The evolution of base cations and sulfur dioxide over the past 20 years, is represented in 
figures 1 and 2 and graphs showing the expected future development in the soil are depicted 
in figures 3 and 4. It is evident at the graph of basic cations that their amount in the soil over 
the last twenty years is still declining. The next graph shows that quantity of carbon dioxide 
which contrarily helps to the acidification of soils was reduced too. Compared to 1990, the 
amount of carbon dioxide was minimized and a number of other acids was reduced. Even 
though the amount of basic cations was reduced, one can say that there was a 
slight improvement of the soil over the last twenty years. When modeling predictions of ions, 
there was found out that number of major ions, who mostly contribute to acidification, will 
decrease in the future. Amount of basic cations in the soil will not change radically, but it is 
positive fact that they are not expected to decline. Based on these results, it is still expected 
an improvement of soil conditions, but this improve will not as fast as in the previous years. 
 
4. Models with the inclusion of uncertainty 

In modelling, it is investigated system replaced by model. Because of it, there always occurs 
a simplification of the system, so we get an incomplete model of the original system. The 
model contains elements called uncertainty.  

4.1. Uncertainty Analysis 

4.1.1. Interval arithmetic 

The interval arithmetic is used to describe of a date uncertainty made by inaccuracy of 
measurement or due to the existence of several alternative methods for estimating the 
parameters. In the Maple system, it was divided into more classical functions (minimum, 
average, maximum) and plotted in one graph. Figures 5 and 6 show the dispersion of 
equation for the solution of ammonium cation and carbon dioxide. The ammonium cation 
graph shows that the default parameter settings are correct because negative values can´t 
occur. 

4.1.2. Probabilistic analysis 

Probabilistic analysis is the most widely used method of description of uncertainty. 
Individual parameters are treated like a random variables with the probability distribution of 
values that may acquire. The aim of this analysis is to determine the probability distribution 
of output values of the model initially at time 1 and then in time 10. The result is that the 
probability distribution doesn´t modify and it remains triangular. 

4.2. Analysis of sensitivity 

While uncertainties occur in the analysis, we want to determine the overall uncertainty in 
model output using the input characterized by uncertainty, at the sensitivity analysis we 
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examine how outcomes are influenced by various parameters of the model (Hřebíček et al., 
2010; Hřebíček et al., 2011). 

4.2.1. Local sensitivity 

Local sensitivity determines how the model output is sensitive to changes of input 
parameters in the "close" some of their representative value. So it examines the local effect 
of changes of only one of parameters in the solution of the model. Calculated listed indexes 
of local sensitivity says, that in all the model equations are locally the most sensitive 
parameters which represent the input flow of ions in the equations. These parameters can 
have the greatest effect on the change in model solutions. 
 
4.2.2. The global sensitivity 

Global sensitivity analysis method is used in models where one of the parameters has no 
default value and can have a wider range of values. The Sobols method was used for the 
calculation (Hřebíček et al., 2011; Urbánek, 2009).  

The analysis shows that the one of the most sensitive parameters is the initial quantity of the 
ions. It is obvious that the resulting rate of change of all ions is the most depended to this 
parameter. Contrary to the other ions, in the case of the equation for sulfur dioxide was found 
out that all parameters are very significantly involving in the distortion of solution. 
Withholding atmospheric deposition is very sensitive parameter because it is the largest flow 
of ions into the soil. The other parameters can be considered less sensitive. 

Figure 1. Development of basic cations 
in the soil over the past 20 years. 

 

Figure 2. Development of sulphur 
dioxide in the soil over the past 20 years. 

 

 

Figure 3. Expected development of basic 
cations in the soil by 2040. 

 

Figure 4. Expected development of 
sulphur dioxide in the soil by 2040. 
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Figure 5. Dispersion equation for the 
solution of ammonium cation. 

 

Figure 6. Dispersion equation for the 
solution of sulphur dioxide. 

 

5. Conclusion 

The acidification of forest is very dynamic and complicated process where is important to 
deal with the past. It is necessary to have large amounts of data and parameters to the exact 
modelling. The modelling is done using Maple software on data from the basin Lysina, the 
Czech Geological Survey. There is apparent on the basis of  the modelling result that soil 
condition will improve in the future only slightly. The presented results are only 
approximate, because I did not obtain sufficient data, especially data relevant to  soils.  
Because the modelling means a simplification of reality, the last part contains an analysis of 
model uncertainty. At first, there was detected the uncertainty at the output of model with the 
help of characterized uncertainty at the input and then, how the outputs are influenced by 
various parameters of the model - a sensitivity analysis. 
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Abstract 

This essay analyses the relationship between species composition of phytobenthos and 
trophic state of selected reservoirs in the basin of the Morava River in the years 2008, 
2009 and 2011. For evaluation of the relationships of variables describing individual 
reservoirs the methods were used which evaluate the reservoir trophic state of stagnant 
water by means of diatom index, diversity indices, coefficients of similarity and 
multivariate statistical methods. By using of Spearman correlations there have been 
shown the relationships between indexes of biological water quality assessment, the 
index number of taxa of diatoms, the diversity index and the indexes of evaluation of 
saprobity and trophy. Thanks to the cluster analysis it has been verified that the 
contents of chemical substances is reflected in the occurrence of diatoms in reservoirs, 
their number and diversity. The number of diatoms and their diversity increases with 
the water quality. But also geo-morphological characteristics of the reservoirs have  
a significant influence on chemical composition of the reservoirs. 

Key words  

phytobenthos, biodiversity, diatom index, multivariate statistical methods 

1. Introduction  

Water reservoirs are significant not only in terms of components of the landscape, but also 
they fulfil many important requirements of a mankind. There are some important functions 
of water reservoirs. They are resources of drinking water and they serve as flood control, 
source of water energy for hydroelectric power, for recreation, fish farming and as a means 
of balancing of the flow of rivers. However, bigger consumption of water means also bigger 
pollution. Biological status of the reservoir can be determined by using fish, benthic 
invertebrates, phytoplankton, macrophytes and phytobenthos. This essay deals with 
phytobenthos assessment. Evaluating phytobenthos, a diatom part of phytobentos is used 
because changes in the aquatic environment evocate an immediate reaction of diatoms by 
changing their taxonomic and quantitative composition. Because of short lives diatoms are 
able to build a new biota in a few weeks (Schaumburg et al., 2004). 

2. Methods 

The data for the assessment of the relationship between species composition and trophic state 
of phytobenthos were obtained from the biomonitoring of the Morava River. They include 
first and second sampling in 21 reservoirs. The data contain the records of the chemical 
mixed sample of the reservoirs and tributaries phytobenthos species composition. Reservoirs 
are described by using of diatom indexes (indexes evaluating the biological water quality: 
TDI, IBD, IPS, IDG, indexes evaluating saprobity and trofic: Rott’s (SI) index, Rott’s (Ti) 
index and Sládeček’s saprobic index, index of the number of taxa of diatoms and the index 
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diversity). These indexes are calculated by using the programme Omnidia, chemical 
components and geo-morphological characteristics of the reservoirs. 

Prior to the analyzing of the relationship between phytobenthos species composition  
and trophic conditions, it was required to make basic descriptive statistic of data and some 
other extra analysis for better orientation in the data to select appropriate evaluation analysis. 
For comparison of the first and second samplings, Wilcoxon paired test was used, who 
determines whether it will be necessary to assess particularly the first and second samplings. 
For the evaluation of relationships between variables, Spearman correlation was used. 

There was also performed a cluster analysis on the data. The aim was to create 2 groups of 
clusters according to chemistry and the occurrence of diatoms in the reservoirs for 
subsequent comparison of dams. Before application of methods for chemical parameters,  
the data was standardized. The data on the occurrence of diatoms were adjusted, too, and 
consequently they were converted into binary data. It was used several clustering methods, 
but the best results were obtained using Jaccard coefficient and Ward method for the 
occurrence of diatoms, Euclidean distances and the furthest neighbour methods for chemical 
parameters.  
It was chosen the appropriate number of clusters on the demographers according to 
knowledge of the dams so that the group gave the most meaningful results. 

3. Results and discussion 

For comparison of the first and second samplings Wilcoxon paired test was used, who did 
not show at the indexes (the level of statistical significance p <0.05) statistically significant 
difference between the first and second samplings, therefore it was not necessary to assess 
the first and second samplings extra. 

The calculated Spearman correlations between indexes and chemicals showed  
a statistically significant correlation at significance level 0.05. Index of IBD correlates with 
BOD5, TOC, N-NO2 and total P, index TDI BOD5, total Mn and P, Rott’s (TI) index 
BOD5, TOC, Mn, N-NO2, total P and chlorophyll, Rott’s (Si) index BOD5, TOC, Mn, N-
NO2,  
N-NO3, total P and chlorophyll, Sládeček’s saprobic index BOD5, Mn, total P and total N. 

On the demographer according to chemical parameters there were chosen three clusters 
marked with Roman numerals I, II and III. According to the occurrence of diatoms there 
were selected six clusters identified by Arabic numerals from one to six. 

Using cluster analysis according to the chemical parameters there was achieved three groups 
of reservoirs, which are reservoir with a similar chemical composition. The diversity of 
groups is also geographic question and that is mainly a matter of altitude, the shape of the 
reservoir and its subsoil. The first cluster is located at South Moravia, region characterized 
by lowlands. Reservoirs of cluster II are largely situated in the Highlands and the cluster III 
is typical East Moravia. The cluster analysis using the chemical parameters showed that the 
chemistry of reservoirs is associated with water quality and quantity of diatoms.  
The reservoirs with lower quality of water have fewer diatoms than the cleaner reservoirs. 
On the contrary, the second cluster analysis that was applied to the occurrence of diatoms 
showed six groups of clusters of reservoirs. The cluster 1 is reservoir Nové Mlýny in 2008 
and the lower reservoir in 2011 (first sampling). In addition to reservoir Nové Mlýny is also 
Vranov reservoir (its first sampling), which also lies on the River Dyje. The cluster 2 
comprises reservoirs, which belong to the larger mesotrophic, eutrophic to hypertrophic 
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reservoirs. The cluster 3 belongs to higher put reservoirs, but there is a surprising presence 
of the second sampling mesotrophic reservoir Bystřička. The explanation may perhaps 
be a remnant of diatoms similar to other reservoirs of the cluster at an earlier period when the 
first sampling from the reservoir Bystřička at this time indicates a eutrophic reservoir.  
The group 4 is the largest cluster group, which includes reservoirs with similar geographical 
characteristics of the reservoir as it was in the group of cluster 3, but cluster 4 has better 
water. The cluster 5 contain only two reservoirs which includes the first sampling from 
reservoir Landštejn and the second sampling from reservoir Nová Říše. Reservoirs are very 
close both the geographic distance and the higher altitude and small size of reservoirs. There 
is a good quality of water which is showed by the results of diatom indexes. So these 
reservoirs have a very low saprobity. The cluster 6 contains reservoirs Bojkovice, Horní 
Bečva and Ludkovice that are smaller and do not reach great depth. 

4. Conclusion 

Between variables of Spearman correlations groups of correlations were tested, who are 
between indexes which evaluate trophic and saprobity (TDI Rott’s (TI) index, saprobic 
Rott’s (SI) index and SLA saprobic index) as well as water quality assessment index (IBD, 
IPS and IDG) and indexes of diversity and number of taxa. Spearman correlation was used 
for relations between the indexes and chemicals. Index of IBD correlates with BOD5, TOC,  
N-NO2 and total P, index TDI with BOD5, total Mn and P, Rott’s (TI) index with BOD5, 
TOC, Mn, N-NO2, total P and chlorophyll, Rott’s (Si) index with BOD5, TOC, Mn, N-NO2, 
N-NO3, total P and chlorophyll, Sládeček’s saprobic index with BOD5, Mn, total P  
and total N. 

In addition, reservoirs were divided into groups of clusters by using cluster analysis. Two 
groups were formed as clusters for subsequent comparison of reservoirs. The cluster analysis 
divided the dataset into three clusters according to chemical parameters and six clusters 
according to the occurrence of diatoms. The analysis showed that the distribution 
of reservoirs into clusters by using cluster analysis closely related with a trophy of reservoirs 
and the geo-morphological characteristics (especially altitude) and ground of reservoirs, who 
are certainly related to the occurrence of diatoms. 

By using cluster analysis according to the chemical parameters, it was possible to verify that 
the contents of chemical substances are reflected in the occurrence of diatoms in the 
reservoirs, their number and diversity. The number and diversity of diatom increase with 
water quality. But, a geo-morphological characteristic of the reservoirs also has the 
significant influence over chemical composition of the reservoir. . For unambiguous 
identification, if diatoms have some specifics on the trophic status of reservoirs or their 
presence affects other properties of the reservoir is a need of further analysis. 
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Abstract 

Regression models are very useful tool for analyzing and summarizing survival data; 
however, they have their own statistical assumptions. Another problematic aspect of 
survival data is a phenomenon called censoring. Thus, special statistical techniques are 
necessary for survival data analysis and modelling. The aim of this contribution is to 
introduce various regression diagnostic tools for survival models. These tools can be 
used to assess overall model goodness-of-fit, to check proportional hazards assumption 
and to look for potential outliers and influential observations. The use of the presented 
methods is documented on real data. 
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1. Introduction 

In survival analysis, regression models are used to describe relationship among an outcome 
variable and one or more independent variables. However, models have own assumptions 
and their validity must be satisfied. If assumptions do not hold, models can be wrong and 
results are then incorrect. Thus models assumptions must be verified. More models can be 
applied to one type of data; important step is also selection of the model, that best fits the 
dataset. 

Regression diagnostic tools help us with checking of model’s assumptions; with these tools 
we can also select the model that is the best for our dataset. 

2. Survival analysis 

In survival analysis, the main outcome variable is the time to an event of interest; the generic 
name for the time is survival time (Clark et al., 2003). If we cannot observe survival time for 
some patients, we say that their survival time is censored. Censoring is specific for survival 
data. Survival analysis deals with following problems: (1) estimation of survival time 
distribution; (2) comparison of survival of different groups of patients; (3) prognostic 
evaluation of different variables (Marubini and Valsecchi, 1995). 

We have two main groups of regression models in survival analysis: proportional hazard 
models (PH models) and accelerated failure time models (AFT models). 

3. Regression diagnostic tools 

Regression diagnostic tools are used to assess model adequacy, i.e. whether explanatory 
variables are correctly selected and whether outliers or influential observation are not 
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presented; we can choose from a group of models the model that best fits to the dataset. 
Regression diagnostic tools are used to check validation of model’s assumptions, 
e.g. proportional hazard assumption, which is assumed in PH models. 

Residuals are a large group of regression diagnostic tools. Residuals and related diagnostics 
can be used for examining different aspects of model adequacy. Essentially, they are defined 
as a difference between observed and model-predicted quantity (Bradburn etl al., 2003). 
There are four main types of these residuals. Martingale residuals are defined as a difference 
between observed and predicted number of events. By transformation of these residuals, we 
obtain new type of residuals, deviance residual. Deviance residuals are more symmetrically 
distributed. With martingale and deviance residuals, we can assess model goodness of fit. If 
residuals are symmetrically distributed around zero, model is appropriate. Subjects that are 
away from whole dataset are identified as outliers, i.e. poorly predicted subjects. Next type 
of residuals, Schoenfeld’s, are used for examining of proportional hazard assumption. This 
assumption means that failure rates of any two individuals are proportional (Marubini and 
Valsecchi, 1995). If this assumption holds, Schoenfeld’s residuals are randomly distributed 
around zero and do not show any obvious trend. Last type, score residuals, measures 
the leverage exerted by each subject on parameter estimates (Marubini and Valsecchi, 1995). 
Subjects that are away from whole dataset are identified as influential observations. 

There are specific regression diagnostic tools for assessing overall goodness of fit. 
The Grønnesby and Borgan test is based on the martingale residuals. The basis of the test is 
a grouping of subjects by their risk score and summing residuals in each group (May and 
Hosmer, 1998). If the model is appropriate, sum in each group should be close to zero. 
Akaike’s information criterion (AIC) is a statistic that trades off a model’s likelihood against 
its complexity (Bradburn etl al., 2003). AIC can be used for comparing parametric models 
and selects the model who is the most appropriate. 

Besides Schoenfeld’s residual, proportional hazard assumption can be assessed by other 
methods. First we can assess this assumption graphically. Data are divided into groups. If 
a PH model is valid, a plot of the logarithm of the cumulative hazard function in each group 
against the time give rise to lines are parallel (Bradburn etl al., 2003). This plot is known as 
log(-log(survival)). For assessing with test, there are several ways. First, we can assess 
proportional hazard assumption by test, which tests whether the effects of covariate changes 
with time. The test is known as time-dependent covariate test. There are also tests, who test 
association between residuals and time, namely weighted residuals score test and linear 
correlation test (Ng’andu, 1997). 

4. Results 

Above-mentioned regression diagnostic tools were applied to a real dataset. Data were 
created by file of patients with chronic myelogenous leukemia that were diagnosed in 
chronic phase from year 2000 to 2008. Time to event was time to complete cytogenetic 
response. Cox’s proportional hazard model was created. 

Overall goodness of fit was tested by Grønnesby and Borgan test. Observed and expected 
numbers of events in each group were approximately same and the fitted model was correct. 

Proportional hazard assumption was tested by graphical method and by weighted residuals 
score test. Test denoted one variable as a non-proportional. 
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Outliers were detected by martingale and deviance residuals and influential observations by 
score residuals. There was one outlier and two influential observations. 

5. Conclusion 

Regression diagnostic tools helped us in finding outliers and influential observations. A few 
patients were denoted as a problematic. Also, the non-proportionality was found in one case. 
. For these reasons, regression diagnostic tools are very useful and their application is very 
important for each model development.  
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