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introduction

1 INTRODUCTION
1.1 basic information

�e following text forms an integral part of studying materials for the course of Artificial Intelligence (AI) and 
is primarily intended for students of the Computational Biology study programme. �is introductory chapter 
describes the artificial intelligence as a scientific discipline, and explains the basic terms of AI. Students will get 
to know the main areas in which AI algorithms are applied. 

 

1.2 learning outcomes
A�er studying the text, the students should be able to:

 
 of their solution

1.3 artificial intelligence (ai) – introduction

1.3.1 What is artificial intelligence, definition
-
-
-

specific implementation is not important. In other words, we emphasise the fact that the intelligence is artificial, 
different from the natural intelligence. But who is naturally intelligent? How can intelligence be measured? Are 
all people intelligent? Are people more intelligent than, for example, than a community of ants in a rainforest? 

�ere are many definitions of intelligence. With regard to the focus of the AI course, we can use the definition 
Intelligence

-
-

your dog how to play chess can be somewhat tricky. Let us simplify the situation and suppose that all people are 

-

-

test that was introduced in 1912 by William Stern.
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-

-

1.3.2 Intelligent machines

we must distinguish between them. �e first aspect is whether the intelligence bearer acts in an intelligent way. 
-
-

What do we expect from intelligent machines? Both humans and machines react externally to a specific prob-
lem in a certain way, and their reactions are based on their internal reasoning. But do humans always act in  

tense situations make them act in ways which are far from rational. People in such situations act according to 

In terms of intelligent machines, do we want machines that:

A. Act like humans (model of human behaviour)?

 problem)?
C. Infer in the same way as humans (do they come to the solution in the same manner as humans do)?

-
-

-
-
-

 

to help students understand the basic algorithms and models which enable machines to simulate a ratio-

as possible. �e so-called weak artificial intelligence is implemented in such machines, as mentioned in the 
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1.3.3 Weak and strong AI
-

of understanding when a system makes corresponding reactions to correct input stimuli. �e next chapter will 
-

standing, or whether it acts like a smart human.

-

In principle, implementation of strong artificial intelligence would lead to the design of a new, artificial hu-
man, while the weak artificial intelligence helps to formalize certain specific areas of human thinking and act-

-
-

plied in the area of weak AI.

1.4 assessing the intelligence of a machine learning algorithm

1.4.1 Turing test

It was designed by Alan Mathison Turing (1912–1954), a prominent British mathematician and founder of the 

German electro-mechanical encryption machine Enigma messages during the World War II, or for designing the 
theoretical concept of the Turing machine, which is one of the basic models in computer science.

-
chine and a human are present (see Fig. 1.1).

Fig 1.1 Turing test



7

introduction

and a machine designed to generate performance indistinguishable from that of a human being. All participants 

following text. Interestingly, the Loebner Prize – determined for the first machine which would pass the Turing 
-

1.4.2 Chinese room

programmes which communicate with humans in natural English language. ELIZA h�p://www.manifestation.com/
neurotoys/eliza.php3) and ALICE (h�p://alicebot.blogspot.com) are the most familiar examples. Such bots employ a 

any understanding to the text. �e following example is adopted from h�p://cs.wikipedia.org/wiki/ELIZA.

> Hello, I am Eliza.
* Hello
> How are you today.. What would you like to discuss?
* I am depressed.
> Did you come to me because you are depressed? 
* Yes
> I see. 

> Can you elaborate on that? 
* Yes, I think it is because of my dad.
> Do you really think so? 
* Yes, he can be really moody sometimes.
> I understand.
...

1.4.3 Applications of AI

-
perfect sensors, contemporary machines learn to walk and to maintain their balance. Practical applications of 

Algorithms for state space search
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Expert systems
-

ample of simpler tasks for expert systems. Assistant systems in medical diagnostics are examples of more com-
plicated tasks. Expert systems are mostly based on databases of rules that are applied in the decision-making 

Artificial neural networks (ANNs)
similarly to a human brain, they are composed from a huge number of interconnected, mutually communicat-

numerous topologies, always with respect to a specific task. Feedforward neural networks (perceptrons) are the 
-

Genetic algorithms -
ary theory. In this class of algorithms, the initial solution (or a group of such solutions) is represented by an in-

-

-
netic algorithms are also considered to be part of AI.

1.5 literature
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2. STATE SPACE SEARCH
2.1 basic information

-
matical Biology study programme. �is chapter summarizes the class of methods of artificial intelligence, co-

based on heuristic algorithms, including their mutual comparison. Uninformed methods seek task solutions blin-
dly, passing through all possible states in which the task may occur. Unlike the methods using heuristics, these 

2.2 learning outcomes
Mastering the learning text will enable students to:

Understand and define the basic concepts from the field of state space search, such as state space, transition  
  operator, target task state, target depth, path length, branching factor, and the heuristic function.

Algorithmically describe the various search methods.
Perform mutual comparisons and evaluations of search algorithms with respect to their entirety, space and time  

  complexity, and optimality of the found solution. 
Solve model tasks using search algorithms.

2.3 introduction
�is chapter discusses a set of algorithms of artificial intelligence that we summarize under the common name 

-
-

-
tion does not mean that we are not able to define the control strategy which will find the solution. For example, 

initial setup of 15 stones and thus reach the conundrum solution. Our strategy can also be as follows: we try to 
-

the resulting configuration is the solution (stones are arranged) or not. In this way, we select a control strategy 

2.4 definition of the state space
State space Sp can be a pair 

Sp = (S, )                 (1)

transition between states. It is true that the k-th state sk is obtained when applying the transition operator ik to 
the state si i is a predecessor of the state sk while sk is the successor of the state si. 

sk =  ki(si)                  (2) 

�e initial task state, in which the solution occurs when starting the search, is denoted as s . 
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but target states representing the solution may be more. �e set G is a subset of the set S.

2.4.1 Representation of the state space
�e definition of the state space and the possibilities of its encoding will be explained using the example of 

         

Tower 1 Tower 2 Tower 3

Fig. 2.1 “Towers of Hanoi” conundrum

In one move, only one disc can be displaced 
A move consists of picking the disc from the top of one tower and its relocation to the top of the other tower
It is prohibited to lay a larger disc on a smaller disc 

�e initial state s  is, therefore, a configuration when all discs are on the first tower, arranged from the lar-

arranged on the second tower.

Introduce a coding that will express the specific state of the task solution using ordered triples of numbers 
where the position of numbers in the brackets specifies the discs from the largest disc to the smallest one, and 

-

(112), and the target state g will be (2,2,2).

must be located on one of the three bars. In our case, for the three discs when each of them must be on one of 

 
i.e. 12, , 21, , , 

-
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(111)

(112) (113)

(132) (123)

(133) (131) (121) (122)

(233) (322)

(231) (232)

(212)(221)

(211)(213)(223)(222)

(323) (321)

(313) (331)

(311) (312) (332) (333)

Fig. 2.2 State space of “Towers of Hanoi” conundrum

2.4.2 ;e task in state space
-
-

our case, it is the path from state (111) to state (222).

(111)

(112) (113)

(132) (123)

(133) (131) (121) (122)

(233) (322)

(231) (232)

(212)(221)

(211)(213)(223)(222)

(323) (321)

(313) (331)

(311) (312) (332) (333)

 Fig. 2.3 State space of “Towers of Hanoi” conundrum, the target state

�e number of applications of operators is called the number of steps or, preferably, the path length. �e fou-

that is optimal in some respect. In the case of uniform assessment of edges, it is the shortest path from the initial 

 may not be the same for all these operators.



12

state space search

Establish a coding of individual states.
Identify the operators and limiting conditions for their application.
Identify the target states representing the solution to the task.
Select the initial state. It is usually given by the task assignment.
Select the strategy for browsing individual states, i.e. the strategy of applying individual operators – space search.  
Apply the chosen strategy, start with the initial state.
Check at each step whether the actual achieved state (or the path to it) is the sought solution. 

space search, which try to optimize this process. �ese methods will be demonstrated in the following sections.

2.5 search methods
-

Uninformed
Informed
Local

information on the benefits of applying a particular operator. Usually, for a certain state, all the transitions (all 

In contrast, the informed methods try to estimate whether the transition from a particular state is preferred 

-

-

successors are less suitable than the current node. �e biggest problem with these methods is the fact that they 
can get stuck in a local minimum.

2.5.1 Evaluation of methods
When opting for a suitable method of state space search, we must be able to describe and compare these 

methods. To do this, we use the basic parameters characterizing the methods. Suppose a directed graph searched 
by the method in the form of a tree as shown in the following figure.
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s0

s1 s2

s3 s4 s5 s6

Fig. 2.4 �e search tree. �e node is represented by the appropriate task state and 
other information necessary for searching with the given algorithm

Introduce the following concepts:

a) Branching factor, denoted as b.
b) Target depth, denoted as d.
c) Maximum path length, denoted as m.

-

-

to the longest possible path in state space, which is implemented (generated) during the search. 

a) whether the method is complete.
b) whether the method optimal.
c) its time complexity.
d) its space complexity.

Ad b) Optimal method, in addition, finds the best solution. It finds a solution with the shortest path in case of 
-

Ad c) Time complexity indicates the number of steps, i.e. the number of applications of transition operators, 
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Ad d) Similarly, the space complexity indicates how much memory (usually in terms of the number of re-
tained states) is needed for the algorithm. 

�is will allow us to characterize each algorithm for state space search in terms of guarantee on finding (the 
best) solution. �e parameters of time and space complexity allow us to estimate the real demandingness of their 

2.5.2 Uninformed search
-

-

1

2 3 4

5 6 7 8

9 10 11 12

 Fig. 2.5 �e search tree – an example

-

 to the selected state. For example, when applying all admissible transition operators to the first state, we get 
the following record: [  is applied to the next state from 

-

also other information. Usually, it is the information on the path to the node (a reference to the parents), applied 
transition operators, and depth of the node in the search tree. In case of informed search, the information also 

examined only once. 

In the following section, we introduce some uninformed state space search. 
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2.5.2.1 Breadth-first search (BFS)
Description
Along with the depth-first search method, it is a basic algorithm for state space search. BFS algorithm searches 

1

2 3 4

5 6 7 8

9 10 11 12

 Fig. 2.6 �e search tree – an example

[

 

-

Features of the algorithm
�e algorithm is complete for a finite branching factor b. It is also optimal in terms of the path length. 

O(BFS) = 1 + b + b2+ … + bd + b(bd-1) = (bd+1)                   (3)

d-1

-
d nodes in the expression. In addition, we must apply the  operator to 

all nodes in this layer according to the BFS algorithm, except the target state. �is fact is represented by the last 
part of the O(BFS) expression, i.e. b(bd-1). 
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maintained in the CLOSE set. In this case, the space complexity is as follows: 

O(BFS) = (bd+1)                 (4)

O(BFS) = (bd)                 (5)

Advantages and disadvantages

2.5.2.2 Depth-first search (DFS)
Description
Together with BFS, the method belongs to basic search algorithms. DFS algorithm searches the tree of nodes 

as follows: It gradually proceeds through the le�most branch of the tree into the maximum possible depth, i.e. 
to the end of this branch or until the target is found. �en, it returns one step back and searches analogously 
another branch of the currently processed node. �erefore, the algorithm does not pass through the tree gradu-

-

and, if not, assess this condition for its successor from the le�.

1

2 3 4

5 6 7 8

9 10 11 12

Fig. 2.7 �e search tree – an example

 [  
[

 

Generating this path corresponds to the principle of data structure of LIFO (last in, first out) stack when the 
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top. �e algorithm works until it reaches the first target state or until the entire state space is searched through 

Features of the algorithm

found may not be the solution lying at the minimum depth, i.e. the solution with minimum length of the path 
from the initial node.

-
sponds to the maximum depth of immersion m and, for the branching factor b, it can be expressed as 

O(DFS) =  (bm+1)                 (6)

-

branch. 

O(DFS) =  (bm)                 (7)

Advantages and disadvantages

-

where we only look for the best possible solution, this can be a reason for not using this method.

-
ximum depth m, and the algorithm is thus not forced to actually expand the longest branch in all cases. 

2.5.2.3 Limited depth-first search (LDFS)
Description
In principle, it is a method completely consistent with DFS but the maximum depth of allowable immersion 

of algorithm I is defined. 

Features of the algorithm
�e algorithm is not complete for a target located at a depth d greater than the maximum allowable immersion 

depth l. �erefore, it is not complete for l<d(g). Otherwise, it is. �e algorithm is not optimal. 

-
plexity is 

O(LDFS) =  (bl+1)                 (8)

LDFS space complexity is

O(LDFS) =  (bl)                 (9)
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Advantages and disadvantages

and that the solution is found at smaller depth than the limit depth. 

2.5.2.4 Iterative depth-first search (IDFS)
Description
�e method is based on DFS or, more precisely, on the LDSF algorithm. �e modification is as follows: Para-

the LDFS search is always triggered from the beginning for each gradually increasing parameter l until finding 
the target or finishing the state space.

Features of the algorithm
For final branching b, this algorithm is complete. It is also optimal 

�e time complexity is exponential, as in BFS and DFS. 

O(IDFS) = d(b1) + (d-1)b2 + … + 1(bd) ≈ (bm)                 (10)

Space complexity is linear, absolutely the same as in DFS. 

O(IDFS) =  (bm)                 (11)

Advantages and disadvantages
-
-

2.5.2.5 Uniform cost search (UCS)
Description

-

-
tizing the lower cost of the transition to a successor, and are therefore browsed (searched) in that order. 

Features of the algorithm

non-zero cost of transitions greater than , where  is a constant. 
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O(UCS)  = O(b1+[C*/ ]), where C* is the cost optimal solution.                 (12)

Advantages and disadvantages
�ey are exactly the same as in the first BFS algorithm.

2.5.2.6 Summary of uninformed methods
 

features of described algorithms is shown in the following table.

Feature        BFS         UCS                 DFS       LDFS     IDFS
     yes no (yes for finite 

branch lengths)
yes

yes yes yes

Yes, l >= d yes (for
finite b)

Completeness

Optimal
Time 

complexity
Space 

complexity

no no
O(b(m+1)

O(b(m+1)

O(b(m+1) O(b(1+[C*/ ])

 O(b(1+[C*/ ])

O(bl)

O(bl)O(bm) O(bm)

≈O(bm)

Tab. 2.1 Summary of the features of uninformed search methods

2.5.3 Informed heuristic search
-
-

based on this knowledge, leading to faster finding of the sought path with high probability and least resources. 

-

appropriate heuristics will finally lead them to the target. 

f(n)=h(n) + g(n)                 (13)

where  h(n) is an estimate of the cost for the path from the n-th node to the target, and g(n) represents the 
cost for the path from the initial state to the actual n-th node. 

-
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-
ceed by problem relaxation. Problem relaxation is a mechanism of finding the admissible heuristics. Admissible 

i.e. realistic assessment of the cost of the path to the target will always be higher than the result of the heuris-
tic function.

-

the Greedy search method.

2.5.3.1 Greedy search (GS)
Description

�e algorithm prefers nodes with the smallest estimated distance to the target. �erefore, it always expands 
the node that seems to be closest to the target according to the function f(n). 

Oradea

FagarasSibiu

Rimnicu VilceaTimisoara

Zerind

Arad

Pitesti

Craiova

Dobreta

Neamt

Iasi

Vaslui

Hirsova

Bucharest

Urziceni

Giurgiu
Eforie

Mehadia

Lugoj

Direct line distance to 
Bucharest
Arad  
Bucharest 
Craiova  
Dobreta  
Eforie  
Fagaras  
Giurgiu  
Hirsova  
Iasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
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244
241
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380
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253
329
80
199
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15175

140

80

99

211
97

146 101
138

70

75

120

111

118

85

90

142

98

86

87

92

Fig. 2.8 A schematic map of Romanian cities
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to find a way from Arad (initial state) to the target in Bucharest (target state). �e algorithm must, therefore, de-
cide whether to go from Arad to Timisoara, Sibiu or Zerindu.

the algorithm selects a city that is closest to the target according to the aerial distance (heuristics). In this case, 

Fagaras, it directs to the target in Bucharest. �e algorithm, therefore, always looks for a local minimum of the 

253 329 374

329 374

193380176366

329 374

193380366

0253

Arad

Sibiu Timisoara Zerind

Timisoara Zerind

Arad

Sibiu

Zerind

OradeaFagarasArad

Arad

Timisoara

Rimnicu Vilcea

Arad

OradeaFagarasArad

BucharestSibiu

Rimnicu Vilcea

Fig. 2.9 Successive generation of the path – greedy algorithm

Features of the algorithm
�e algorithm is not complete. Also, it is not optimal. Time and space complexity corresponds to uninformed 

O(GS) =  (bm)                 (14)
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Advantages and disadvantages

-

2.5.3.2 A* algorithm 
Description
�is algorithm again uses the principle of greedy search, but also includes the cost of the path to the n-th node 

and h(n) is an estimate of the cost of the path from the n-th node to the target node representing the problem 
solution. �e function f(n) thus represents an estimate of the cheapest path to the target leading through n.

the target. In case it is not, the algorithm is referred to only as the A algorithm. �e heuristic function, therefore, 

two cities must always be shorter or the same as the length of the road connecting them.

Arad

Arad

Arad

Arad Arad

Arad

Sibiu

Sibiu

Sibiu

Sibiu

Timisoara

Timisoara

Timisoara

Zerind

Zerind

Zerind

Fagaras

Fagaras

Oradea

Oradea

Rimnicu

Rimnicu

Craiova Pitesti

f=140+253
=393

f=118+329
=447

f=75+374
=449

f=280+366
=646

f=239+178
=417

f=146+380
=526

f=118+329
=447

f=118+329
=447

f=75+374
=449

f=75+374
=449

f=220+193
=413

f=280+366
=646

f=239+178
=417

f=146+380
=526

f=366+160
=526

f=317+98
=415

f=300+253
=553

 
Fig. 2.10 Successive generation of the path – A* algorithm
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also contains an estimate of the length of the following path based only on the aerial distance between the cities. 

Features of the algorithm

of the path to the target, f(n), it must ultimately reach the target for the final number of nodes with f(n) < C*. A* 

�e condition of the finite number of such nodes may not be met if the branching factor b is endless or if the 
graph contains an infinite branch, though with a final cost. It may be the case when h(n) for the nodes on this 
branch is zero. 

�erefore, the condition of completeness in the A* algorithm is the application of admissible heuristics  

 

does not check any nodes with  f(n) > C*.

Admissible heuristics ensures that the A* algorithm is optimal.

Suppose that we are in a particular node from which two edges lead off. One edge leads directly to the node 
with suboptimal target gsub

gopt with the actual cost of path C*. 

sub sub sub).

 
 If the algorithm selects node gsub, than f(gsub

d) Points b) and c) implicate that f(gsub  
 g(gsub

sub) to the suboptimal target 
is less than the actual cost of the path to target C*. 

�erefore, the A* algorithm cannot select a suboptimal target gsub sub sub) from 
any node because the cost estimate f(n) for node n on the path to the optimal target gopt with path cost C* is al-
ways lower, with regard to admissibility (i.e. always optimistic estimate) of the heuristics.

n), the complexity corre-

O(A*)  =  (bm)                   (15)
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O(A*)  =  (bm)                    (16)

-
lue of the function f(n) that is simultaneously higher than the current l. �is method is referred to as IDA*. Ano-

cost of suboptimality of such a solution. 

Advantages and disadvantages
It is a successful algorithm that usually and significantly reduces the time complexity of the search, depen-

-
tend the already long paths.

Like in the case of GS, it is necessary to treat the possibility of algorithm loops using the CLOSE set. �e rela-

2.5.4 Local search methods
A separate area of methods for searching the state space is represented by the so-called local search methods. 

ability to return.

Compared to a simple gradient search, the simulated annealing algorithm differs in introducing the concept 
of the temperature T. �is temperature is high at the beginning of the search (it allows wider state space search 

solution). When selecting a successor, the algorithm does not always choose only the best successor in each node 

algorithm is able to get out of it with certain probability and search also those parts of the state space where the 
simple gradient method would not enter. In case of failure, this algorithm is o�en started repeatedly from diffe-
rent starting points of the state space.

-
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2.6 literature
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3 EXPERT SYSTEMS
3.1 basic information

-

-
troduces the methods that can address the inclusion of uncertainty in ES decision-making mechanisms.

3.2 learning outcomes
Mastering the learning text will enable students to:

Understand the basic concepts such as 
Expert system
Rule-based and non-rule-based expert systems
Forward and backward chaining in ES 
Acquire inference in ES using propositional logic and modus ponens 
Become familiar with and understand the methods of dealing with uncertainty in ES
Bayesian conditional probability
Factors of certainty
Fuzzy logic 

3.3 expert system (es)
Expert systems belong to the methods and models of artificial intelligence. �ey represent a computer mod-

el designed to replace decision-making by human experts. In accordance with the definition of artificial intelli-
gence, it is then a type of intelligent machines emulating human decision making. Expert systems are created as 

knowledge and experience.

-

expert human decision-making to a system operating according to set rules as, more o�en than not, the human 

3.4 components of expert systems
�e basic idea of an expert system, regardless of its specific implementation, is that it contains a knowledge 

inputs, makes its own decisions and responds with its conclusions – outputs.

Facts (inputs)

Conclusions 
(outputs)

Knowledge base

Inferential mechanism

Fig. 3.1 Expert system (according to [1])
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database of decision rules) and inferential mechanism:

Working memory to store actual facts
Knowledge acquisition module ensuring updates to the knowledge base
Explanatory module that allows the user to view the process through which the ES has drawn the respective  

  conclusions
User interface for interacting with ES user 

Facts (inputs)

Conclusions 
(outputs)

Knowledge base 
(rules)

Working memory 
(facts)

Explanatory 
module

Knowledge acquisi-
tion module

User interface

Inferential mecha-
nism

agenda

Fig. 3.2 Block diagram of the expert system (according to [1])

3.5 rule-based expert systems

3.5.1 Knowledge representation

certain assumptions and generating conclusions that result from such presumptions. �erefore, these systems 
-

-

�e inferential mechanism in production ES is based on repeated application of the modus ponens rule. 

q

qpp, ⇒

                  (1)

�e modus ponens rule expresses the fact that if the assumption p and p ⇒ q  rule apply simultaneously, then 



28

expert systems

p q p->q (p->q) p ((p->q) p)->q
T
T T

T

T T

T T

T
TT

T
F F F

F
F F F

F

Tab. 3.1 Modus ponens (according to [1])

(p ⇒ q)

Similarly, when we assume the same rule (p ⇒ q). Someone might see us at the swimming pool and is thus able 

�rough repeated inferences, the expert system tries to create an inferential chain that directs input facts to-
-

tion of which creates a path from initial facts to conclusions produced by the ES.

Basically, the ES can create the inferential chain in two ways – based on the principle of forward chaining or 
backward chaining. 

Let‘s take these rules:

crucian(x) -> fish(x)

with known rules, and come to a conclusion. �us, we can make the inference according to the following sched-
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Veiled crucian (nela)

Veiled crucian (x) - > crucian (x)

crucian (x) - > fish (x)

fish(x) - > lives in water (x)

Fig. 3.3 Simple inference in the ES

�e typical steps of the forward chaining are: 

Comparison – we pair supplied facts and find out which rules are workable
Conflict resolution – in the set of workable rules, we have to select and perform some rule (randomly, according  

  to priorities ...) 
Execution – execution can result in the emergence of a new fact, the removal of fact, the introduction of a new rule… 

infer possible conclusions. �is method is useful for tasks that begin in the present and, on the basis of its knowl-
edge, infer what will happen or what is to happen in the future.

-

determine their priority. Forward chaining is usually implemented as a defined space searching in width. A typ-
ical area of application is planning and management.

-

searching in depth. Typical examples are diagnostic tasks.

3.5.3 Advantages and disadvantages of rule-based ES

Modularity - Unequivocal expression of the given knowledge by a rule and the ability to easily expand this set of  
  rules. �e knowledge acquisition module is simple.

Simple interpretation - �anks to the unambiguously given algorithm and the sequence of rules performed, it is  
  easy to create the explanatory module and thus submit a comprehensible description of the decision-making pro- 
  cess represented by the inferential chain.

Similarity with human reasoning - If I see and know something, I behave accordingly. Rule-based ES proceed  
  analogously. 

-
ferable to an acceptable number of rules. 

Not very efficient algorithms for comparing rules and space searching 
Risk of cycles 
�e inability to capture complex problems with a reasonable amount of clear rules 
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3.6 non-rule-based expert systems

-
tween them.

3.6.1 Semantic networks
�e semantic network is represented by a bi-directionally oriented graph that represents ES knowledge. �e 

thus spread out in a single network layer – shallow knowledge structure. �e most commonly used relations be-

each EC may, therefore, come up with its own definitions or modifications.
 

diameter
cardiovascu-

lar system

Is part ofIs parameter of

Is a kind of

vein artery

hearth

ventricle atrium

aorta hearth 
valve

closes

blood 
vessel

Is part of

Is part of Is part of

Is a kind of

Is a kind of

Leeds off from

closes

Inheritance – diameter is the 
parameter of blood vessels; 
therefore, it is also a 
parameter of veins because 
veins are blood vessels.

Transitivity – �e aorta is a type of artery, 
artery is a kind of blood vessel and blood 
vessel is part of the cardiovascular system. 
�erefore, aorta is also part of the cardio-
vascular system, as well as an artery.

Fig. 3.4 Semantic network of the cardiovascular system (modified according to [1])

-

3.6.2 Frames and objects
-

Frames are based on the concept that people, when dealing with new situations, use similarities with the al-
ready known schemes, i.e. they look for stereotypical solutions to a new situations on the basis of analogy, only 

-

called contents. Contents may also be other frames or special procedures that are called, for example, when 
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-
ally arranged in schemes.

Frame “family vehicle”
  – Name:
  – Type:
  – Owner:
  – Location: range (garage, shed, parking-site) 

Frame “car”
  – Name: car
  – Specialization:
  – Type: passenger cars
  – Location: garage 

Frame “Petr’s car”
  – Name: 
  – Specialization: car
  – Owner: 

to semantic networks, it is possible to create more complex knowledge structures by means of diagrams. Adapta-

its own space. 

Abstraction from the details of the world and the internal implementation of the object. �e object captures only  
  those features of reality that are essential for solving problems.

Encapsulation of internal a
ributes and methods. �e object represents a black box. Outwardly, it only provides  
  a clearly defined interface irrespective of the internal implementation. �is ensures stable behaviour of the ob- 
  ject, which is dependent only on the input variables.

Inheritance – objects (descendants) inherit their properties (a
ributes, methods) from their parent or even more 
   parents at the same time. �ey can complement them, or even transform, e.g. change the internal implementa- 
  tion of the given method. �e hierarchy of objects is determined by the arrangement of their pa
erns – classes.

Polymorphism – for various descendants of the same class, internal implementation and the execution of meth- 
  ods can be different although the objects of different classes look equal in relation to their ancestors. Any descen- 
   dant knows, at least, the same as its parent.
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 Class T
 A�ributes: A1, A2
 Methods: M1, M2

 Class T1 (od T)
 A�ributes: A3
 Methods: M1, M3

M1

M2

A1, A2

M1M3

Instance creation

class inference

M2

A1, A2, A3

Fig. 3.5 Class and its instance (according to [2]) 

3.7 uncertainty in es
-

want to conclude using ES. �e mentioned facts are the reason for introducing uncertainty into ES decision-ma-
king. Most o�en, the uncertainty is modelled by a numeric parameter that represents the degree of pertinence 

3.7.1 Conditional probability

-

It is true that 
0 <= P(pi) <= 1                 (2)

It is also true that 

∑iP(pi )=1                 (3)

1 or p2

i can be ex-
pressed by Bayes relation for conditional probability: 

 P(p q
i
) * P(q

i
)

(P(p)
P(q

i
p)=

                 (4)
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3.7.2 Dempster-Shafer theory
Another method of dealing with uncertainty in ES is the Dempster-Shafer theory. It works with the concept 

i. 

 = {q1,q2,…,i}.                 (5)

1 2

Ω( ) = { , {q1},{q2},{q1, q2},{q1, q3},{q2, q3},{q1, q2, q3}}                 (6)

-
tain combination of hypotheses, i.e. a certain subset X. It is true that 

m: Ω( )  <0, 1>                  (7)

m ( ) = 0                 (8)

 m(X)=1
(X Ω

∑
                 (9)

-

-
fore, it is not assigned to any particular subset.

i. 

m
3
 (X

3
 ) =  ∑ m

1
 (X

1
 ) m

2
 (X

2
 ) 

X
1

X
2                  (10)

i. 

�e application of Dempster’s rule can be demonstrated using the following example. Assume again that we 
1 2

Ω( 1 2 1 2 1 2 1 2

Let X1 1 2 1 2

1, e.g. m1(X1

2, m2(X2

m(X1 1(X1) m2(X2) + m1(X1) m2(
m(X2 2(X2) m1(
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-

In the Dempster-Shafer theory, the concept of the amount of cases is an analogy to the conditional probabil-

the following applies to each of them 

∑ P(q
i
 )=1

i                     (11)

P(qi) = 1 – P(~qi)                 (12)

3.7.3 Fuzzy sets
-
-

A = {(A(x1),x1), (A(x2),x2), …, (A(xn),xn) }                 (13)

Complement
Union
Bold union
Intersection
Bold intersection
Concentration
Dilatation

A‘(x) = 1 - A(x)
 (A  B)(x) = max(A(x),B(x)) = A(x)  B(x)
 (A  B)(x) = 1  (A(x) + B(x)) = A(x)  B(x)
 (A  B)(x) = min(A(x),B(x)) = A(x)  B(x)
 (A  B)(x) = 0  max(A(x) + B(x) - 1) = A(x) B(x)
 con(A)(x) = A2(x)
 dil(A)(x) = 2A(x) – (A(x))2

Tab. 2 Operations over fuzzy sets (according to [1]).

�e operations are used to create new fuzzy sets. For example, it is possible to obtain a new fuzzy set of small 
fat people by calculating the intersection of these sets. Using concentration and dilation operators on a fuzzy set 
of tall people can be seen as creating a set of really tall people (con) or a set of people who are rather tall (dil). 
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q

qpp, ⇒

-
-

In the final stage of the decision-making process, the expert system using fuzzy logic will reach a point where 

of the most likely hypothesis (e.g. according to the maximum degree of pertinence). It may also be an inference 

3.8 literature
 

 
 of Mechanical Engineering. 
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4. NEUR AL NETWORKS – THE SINGLE NEURON
4.1 basic information

primarily for students of Mathematical Biology study programme. �is chapter can be considered as an intro-

model of the neuron, and explains its classification options. Understanding the mathematical model of the single 
neuron is a necessary starting point for understanding the concept of complex structures using interconnected 
sets of single neurons - artificial neural networks.

4.2 learning outcomes
Mastering the learning text will enable students to:

Learn and understand the analogy between artificial neural networks (ANN) and their biological motivation,  
  understand the concepts of ANN topology – neuron, layer, connection 

Parametrically define a mathematical model of the single neuron and define the meaning of individual param- 
  eters and the types of neuronal transfer functions 

Understand the active dynamics of the neuron and its geometric interpretation, and formalize it mathematically 
Learn the basic concepts and algorithms of adaptive dynamics of the single neuron 

 o Hebb rule
 o Delta rule
 o Learning according to Widrow
 o Training and testing sets 

Apply the AND, OR, NOT and XOR mathematical logic functions in relationship with the classification capabil- 
  ities of individual neurons

Implement a model proposal of the AND, OR, NOT logic functions by se
ing the neuron parameters  
Understand the classification ability of the single neuron with two inputs and a binary output, and its geomet- 

  rical interpretation in the plane 

4.3 introduction to neural networks

4.3.1 Biological analogy
 In the past, the concept of artificial neural networks was inspired by, and then created based on, the biolog-

-
-

-

 

may thus increase or suppress the response of neurons to incoming stimuli, impulses.
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nucleus

dendrites

neurosome

basal dendride

axon fibre

Groove of Ranvier    

Myelin sheathsynapse

Terminal fibres  

Fig. 4.1 Biological neuron (according to [3])

If we adhere to the simplistic description of the biological neuron, which should lead us to its mathematical 

and the axon. In terms of the spread of excitation, dendrites represent inputs to the neuron body, through which 

and multiplication. It is assumed that the plasticity of dendrites represents the base for long-term memory. Axon 
is the output of the neuron, which spreads excitation from the neuron body and which is connected to the den-
drites of other neurons through synapses.

-

-

4.3.2 History of ANN

-
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0  y1 + ... + yn > 0
1  x1 + ... + xn > 
0  otherwise.

x1

xn
 

y1

yn

1

{
Fig. 4.2 Model of the neuron by McCulloch-Pi�se (according to [3])

rule that allowed the learning of neurons by changing the weights of their inputs. His assumption was that if a 

is excited incorrectly, the connexions would be weakened.

-

 

receptors Associative elements Responsive 
elements

Maximum 
selection 

block     

Random interconnection       

Environment

Random interconnection       

Fig. 4.3 Rosenbla�’s perceptron (according to [3])

-
-

-
work but there was no formalized algorithm that would allow learning of such networks. He erroneously as-
sumed that it would not be possible to find the learning algorithm due to the complicated network structure. His 
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conclusions resulted in redirection of the grant funds to other areas of artificial intelligence and the concept of 

enabled the learning of multilayer networks on the principle of retrograde propagation of errors (error back-

which continues to this day.

4.3.3 ;e concept of artificial neural network

weighted input signals and generates output. 

-
ed and rated connexions. Inter alia, each artificial neural network is thus characterized by the type of neurons, 
their topological arrangement and adaptation strategy in network training, learning. 

�e basic idea of the concept of artificial neural networks will be shown on the principle of the most com-

through the network from input unidirectionally toward the network outputs. �e arrangement of neurons for 
the forward network is shown in Figure 4.4.

 

input layer output 
layer

output

input 1

input 2

input 3

input 4

hidden layer

Fig. 4.4 Arrangement of neurons into layers in the feed-forward neural network

-
cent layers. �e connexions between neurons that represent pathways for signal propagation are oriented, and 

network is called the input layer, the last layer is called the output layer and the other intermediate layers are 
called hidden layers. Typically, the feed-forward neural networks are implemented as networks with one, pos-
sibly two, hidden layers.

-
ron, is working locally, separately. Such a neural network is characterized by considerable robustness, is resis-

suitable for the construction of neurocomputers, i.e. computers based on neural networks. It is much easier to 
create an element with high degree of integration and some faulty elements than an element with lower inte-
gration where all elements are perfect.
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�e presented feed-forward network topology is only one, albeit the most common, of the possible arrange-

structure includes feedback, or each neuron is connected with all other neurons. Some of these concepts will 
-

ral networks.

4.4 single neuron

4.4.1 Mathematical model and neuron active dynamics 
-

neuron inner potential -
stant threshold h represents another input into the neuron body. 

 

inputs
weights

neuron inner potential

output

Activation transfer function     

treshold

x 1

x 2

x 3

x 4

x n

w 1

w 2
w 3
w 4

w n

h

σ( ) y

Fig. 4.5 Model of neuron

inner potential 

ξ ∑
n

i=1

w
i
x

i
 – h=

            (1)
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to adaptation during training. 

                                    

)()(
0=

==
n

i
ii xwy

where x0 = 1 and w0 = -h.                 (2)

-
ner potential. Assume its simplest type, sharp non-linearity, the following applies 

01

0{)( = if

otherwise                   (3)

Further, assume a neuron with two real inputs x1, x2 and corresponding weights w1, w2 -
2

1 and x2 represent points in the two-di-

When we take a closer look at the relationship expressing neuron response, we find that the classification of 

w1x1 + w2x2+w0 = 0                 (4)

w0 + ∑ wi xi > 0
i - 1

x

y = 1

w0 + ∑ wi xi = 0
i - 1

x

w0 + ∑ wi xi < 0
i - 1

x

y = 0

Fig. 4.6 Illustration of the neuron classification in a plane (according to h�p://
www.byclb.com/TR/Tutorials/neural_networks/ch8_1.htm) 
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  y

1

0
  y

1

0
  y

1

0
-1
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1

step function

Partial linear function     

logistic sigmoid

hyperbolic tangent σ( ) = tanh (    ) =  
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0 iƒ   < 0

σ( ) = {   > 1
0 ≤    ≤ 1

  < 0

1
 

0
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1 + e -  
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2

1 - e_____
1 + e -  

-  

Fig. 4.7 Activation transfer functions

Concluding this section, it should be at least noted that different concepts of the neuron are also used, where 

-
ysis of signals and images.

4.5 adaptation dynamics of the neuron

4.5.1 General principles of neuron learning

-
figure these neuron parameters so that the neuron performs a desired transformation. �e parameters adapted 
during neuron learning are usually only weights of the input neuron synapses, including the synapse represent-

-

their corresponding outputs. In exceptional cases, the sought weights can be determined by direct calculation.
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Adaptation principles of the single neuron mentioned in next chapters can be easily generalized to feed-for-

-
-

not be used to explain the solution to the problem. Although the networks are powerful computational models 

transformation of the neural network.

4.5.2 Unsupervised learning

-
rectness regarding the sought transformation of input data. It works on the principle of clustering, looking for 

-
forms their sorting into groups without the possibility of assessing the accuracy of classification. �e number 

on the information contained in the input data. �e algorithm can, therefore, be also used at the moment of net-

self-organizing maps that will be discussed in a separate subsection.

4.5.3 Supervised learning

-

M = {[x1,yd
1], [x2,yd

2]…. [xpmax,yd
pmax]}                    (4)

-

-

the problem.

-
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-

-

expected outputs.

we estimate the success of the adaptation and generality of the transformation found also for other inputs than 

-
ty for inputs yet unknown.

1. Pre-processing of input data

4. Initialization of neuron weights, usually small random numbers

 

12. If the learning epoch is not finished (not all inputs from the training set are tested), go to point 9
 

 <  

 

4.5.4 Hebb learning

the basis of strengthening or weakening the bonds between single neurons. He assumed the following: the bond 

d  
 are in the next discrete time step n+1 strengthen by 
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∆ (n+1wi = wi + ∆, i:xi = 1                    (5)

d

∆  (n+1wi = wi - ∆, i:xi = 1)                    (6)

4.5.5 Delta rule
Another rule, originally heuristic, applicable also for generally real neuron inputs and outputs, is the delta 

n+1wi = nwi +  μ*(yd-y)                    (7)

n+1w = nw +  μ*(yd-y)                    (8)

4.5.6 Neuron learning according to Widrow
It is based on the geometric interpretation of neuron learning for a neuron with binary output. In accordance 

-

the classification is erroneous, the classified point is located in the wrong part of the half-space split by the di-

=0                    (9)

=d
w
w

x
(10)

We introduce an error function that expresses the total distance from the hyperplane for all misclassified pat-
terns Xf w.
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±==
fX

E
fX

)(w w w xx
                   (11)

where +x x
classification. 

changing the weights w. Minimisation of the error function is performed in the direction (the function already 
contains change of signs according to misclassification) of gradient E(w) and the following applies:

n+1w = nw +  μ* E(wn)                   (12)

±=
fX

nE )( w x
               (13)

�erefore, the function E(w
-

w) in parts. 

w -

w n+1wn wn ± x
-

x |x|>>|w|
w w x in 

w decreases 
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x1

x2

x3

w0

1) Starting situation a�er initialization     2) Correction according to vector x1

3) Correction according to vector x3 4) Correction according to vector x1

x1

x2

x3

x1

x2

x3

x1

x2

x3

w2

w3

w0

w1

Fig. 4.8 Geometric illustration of the adaptation in case the vectors X
1,
 X

2
, X

3
 should 

be correctly classified into the white section of the half-plane

4.6 classification capabilities of the single neuron

2

binary inputs (x1, x2

4.6.1 Implementation of logical function AND 

X1               X2     X1 AND X2

0 0 0
010

1
1 1 1

0 0

Tab. 4.1 AND logic function

 

AND

x2

0

0 0

1

x1

Fig. 4.9 AND logic function in the plane
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1
x1

x2

x0 = 1
w0

w1

w2

Fig. 4.10 Neuron a�er implementing the function AND

-
rect classification 

1, w2, w
1, w2, w
1, w2, w

1, w2, w

thus

w1 2

w1 21 + w
w11 + w2

w11 + w21 + w

1 2

neuron.

 is constant, w
therefore, looking for configuration of weights w1 and w2 with regard to which the neuron outputs will be correct 
for all four possible combinations of inputs x1 and x2

outputs on the weights w1 and w2
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Fig. 4.11 Graphical solution to the adjustment of neuron weights for implementing the function AND

function depends on the number of inputs to the training set and the number of neuron weights.

4.6.2 Implementation of OR and NOT logic functions 

neuron. 
 X1                X2       X1 OR X2       NOT X1  

0 0 0
01

1
10

1
1 1 1

0 0 0
0

Tab. 4.2 OR and NOT logic functions

1 2

w1 2

w1 21 + w
w11 + w2

w11 + w21 + w

2

w11 + w
w1
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4.6.3 Implementation of XOR logic function

know that it is implemented by the weight w  and constant input x ). 
 

1
x1

x2

x0 = 1
w0

w1

w2

Fig. 4.12 Neuron for the implementation of OR and NOT functions

   

 X1                X2     X1 XOR X2     
0 0 0
0 11
1
1 1 0

0 1

 

Tab. 4.3 XOR logic function

 

XOR

x2

1

0 1

0

x1

Fig. 4.13 XOR logic function in the plane

w10 + w20 < h ⇒  0 < h                 (13)

w10 + w21 > h ⇒  w2 > h                 (14)

w11 + w20 > h ⇒  w1 > h                 (15)

w11 + w21 < h ⇒  w1 + w2 < h                 (16)
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If analysing the relationships in more detail, we find that: 

2

1

-

4.6.4 Summary of the classification capabilities of the single neuron
�e single neuron with binary output is able to distinguish only two linearly separable classes. �e neuron di-

-
guments against the concept of artificial neural networks.

layers of interconnected neurons. 

4.7 literature
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5 NEUR AL NETWORKS – PERCEPTRONS
5.1 basic information

-
ematical Biology study programme. �is chapter deals with the most common concept of feed-forward artificial 
neural networks, usually not precisely acknowledged as single-layer or multilayer perceptron(s). �e chapter 

classification capabilities. More specifically, it deals with the basic adaptation algorithm for multilayer feed-for-
ward networks, the algorithm of backward propagation of errors (error backpropagation).

5.2 learning outcomes
Mastering the learning text will enable students to:

 
 active and organization dynamics of the network. 

Define the organization dynamics of single-layer and multilayer perceptrons (MLPs). 
Generalize the findings from previous chapter for expressing classification possibilities of the single-layer perceptron. 
Derive the classification possibilities of multilayer perceptrons in 2D space and demonstrate their classification  

  capabilities via implementation by the XOR multilayer perceptron. 
Understand the consequence of Kolmogorov’s theorem for MLPs. 
Understand MLP adaptation dynamics and explain the formal mathematical expression of backpropagation al- 

  gorithm, and describe the importance of its individual parameters. 
Identify the application fields for MLPs.

5.3 feed-forward neural networks

5.3.1 Introduction
Artificial neural network is a mathematical model comprising simple interconnected elementary processing 

units, the neurons. 

Procedural elements are very simple; however, they work simultaneously in large numbers
Network activity is parallel
Individual procedural elements operate independently, locally and o�en asynchronously
Neurons are mutually, more or less densely, interconnected with oriented connections, evaluated by numerical  

  weights
�e weights are adjusted through controlled network learning and their se
ing represents the internal memory  

  of the network knowledge 
�ey represent a robust solution of partial damage to the network or incompleteness of the input data

inputs X1... Xn outputsY1... YmNN - Black Box

Fig. 5.1 General scheme of a neural network



53

neural networks – perceptrons

-

there is no formalized analysis of artificial neural networks.

According to the type of used computational elements (formal neuron) 
According to the network topology, i.e. the arrangement of elements (recurrent, forward, reciprocal  

  links)
According to the training algorithm
According to structuring

Unstructured – all neurons are equivalent (Hopfield) 
Structured – typically contain an arrangement of unstructured subnets 

Hierarchical
Competitive

NN static input

binary input continous input

supervised unsupervised

Perceptron Kohonen SOM

MLP

unsupervisedsupervised

Hopfield network

Hamming network

 Fig. 5.2 possible division of neural networks according to Lippmann

5.3.2 Dynamics of neural networks
As in the case of the single neuron, we can distinguish three phases of the establishment and operation of ar-

tificial neural networks, three types of dynamics. 

Organization dynamics specifies the network topology, establishment of the network and the possible changes 
in its architecture. It is mostly constant, but not necessarily. We can distinguish two basic organization dynam-

-
-

representing the function of network transformation. 
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-

5.3.3 Historical RosenblaQ perceptron
It represents the model of classical neural network inspired by the human eye. �e network modelled percep-

Random interconnection of inputs
Fixed weights Adaptable weights

Input pa�ern

Random 
boolean units

LTG

z

z

z

w

w

w

1

1
2

2

3

3

y

Fig. 5.3 Rosenbla� perceptron

�e concept of perceptron has its roots in the field of artificial intelligence and now, regardless of its original 
meaning, it is used for all feed-forward neural networks, i.e. networks with layered arrangement of neurons and 

 

Output

Input

Output layer

Hidden layer

Output layer

Fig. 5.4 General structure of the multilayer feed-forward network

�e feed-forward neural network is, thus, represented by a directed graph where each node is connected by 
-
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5.4 single-layer perceptron

5.4.1 Organization, active and adaptation dynamics
Conceptually, the single-layer perceptron is the simplest layered network. It represents M independent neu-

layer with M output neurons. �e input layer is not composed of neurons within the meaning of the established 
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x
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y

y

w
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w
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n m

1

ji
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Fig. 5.5 Single-layer perceptron

n m transformation set during adaptation dynamics, 
-

n -> 
m

If introducing the following rule for marking the neuron weights, 

wj,i =wwhere, from where = wherewfrom where = j-th neuronw i-th weight                 (1)

)()(
0=

==
n

i
ijij xwy

             (2)

of the single-layer perceptron completely corresponds to the single neuron.
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5.4.2 Classification possibilities
2 m transformation, i.e. the classifica-

shi� in the perceptron classification possibilities compared to the single neuron because the neural network 
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Fig. 5.6 Division of Euclidean space by a single-layer perceptron with three neurons

A way out of this situation is the addition of another layer of neurons and the introduction of the concept of 
multilayer perceptrons. 

5.5 multilayer perceptron

5.5.1 Organization and active dynamics

 

Fig. 5.7 Organization dynamics of a multilayer perceptron

Compared to one-layer perceptron, in addition to the input and output layers, the network topology was ex-
-

ly interlinked while neurons within a layer are not interconnected. �e number of neurons in the hidden layers 

the number of input and output neurons.

n m transformation, depending on the nature of 

)()(
0=

==
n

i
iji

k

j

k xwy

                  (3)
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-

5.5.2 Illustration of classification possibilities of multilayer perceptrons
For simplicity, assume again the classical Euclidean two-dimensional input space in which we want to classi-

number of neurons in the hidden layers will not be substantial to this illustration.

 

A

B

Fig. 5.8 Schematic representation of classified sets

 

Input 
layer

Hidden layer Output 
layer

Fig. 5.9 �e hidden layer in a multilayer perceptron

areas, for example as follows:

A

B

Fig. 5.10 Division of the space by a multilayer perceptron

In this case, classification into classes A and B would not be completely perfect because the le� lower area 
-
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-
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Fig. 5.11 XOR logic function
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Fig. 5.12 Possible implementation of XOR logic functions by a multilayer perceptron

-
rons in the next hidden layer. 
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Fig. 5.13 �ree-layer perceptron
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-

5.5.3 Classification possibilities of multilayer perceptrons – Kolmogorov’s theorem
In expressing the classification capability and computing power of multilayer perceptrons, we can refer to the 

1 n

 

f (x
1
,…,x

n
 ) =∑

q
(∑ 

pq
 (x

p
))

q=1

2n+1

p=1

n

                (4)

where , 

-

-

�e presented relationship actually corresponds to the calculation implemented by a multilayer perceptron 
with n input neurons, n neurons of the first hidden layer with functions  (4), 2n + 1 neurons of the second 
hidden layer with functions  and one output neuron. �e condition is to use neurons with continuous, mono-

 

f (x
1
…x

n
 ) = ∑ (∑ pq 

q
 (x

p
))

q=1

2n+1

p=1

n

(5) 

reduced to multiplication of one function . 
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w=1*

w=1

w=0w=0

X1

Xn

w=

w=1

w=1

w=1

 ( )

w=1

w=1

 ( )****

 ( )

 ( )

 ( )

f(x1 ... xn)

fq(xp)**

fq(xp)

p = 1 .. n

q = 1 .. 2n+1

pq***

* Non-zero is only the 
weight between corre-
sponding p-th input and 
p-th neuron.

** Or
 fpq(xp) 

according to the 
input (4).

*** OR 
w=1 according to 

the relationship (4). **** Or q( ) 
according to the relation-
ship (4).

Fig. 5.14 Kolmogorov’s theorem for a multilayer perceptron

 a functions may be problematic due to the following reasons: for an accu-

as neuron transition output functions because  functions are not generally smooth.

-
-
-

f(x), not its absolutely exact representation.

-
-

In the case of a double-layer perceptron, i.e. the perceptron with one hidden layer, we can refer to the results 
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5.5.4 Adaptation dynamics
-

p elements in the following form 

T = {[x1,yd1], [x2,yd2]…. [xp,ydp]}                   (6)

-

e
p
=y

dp
 – y

p
                  (7)

1. Presentation of input xp to the network. 
2. Finding the network response yp.

ep for the last layer of the network. 

�ese steps are repeated until meeting the conditions for stopping the adaptation.

-

output layer, and yet established algorithms could only adapt the last weights in the output layer. �erefore, the 

5.5.5 Algorithm of error backpropagation (BP algorithm)
�e error backpropagation algorithm is a basic learning algorithm for multilayer perceptrons. It will be de-

-
tor, the network implements the following transformation

)( pp xy =
             (8)

 pdpp yye =
             (9)
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=

=
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pjp e
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              (10)

pp pro= }{
              (11)

When minimizing this function for example using the gradient method of the steepest descent, we would ob-

w. �eir change, therefore, implements 
w, we can write 

where t denotes the learning step and μ is a constant determining the speed of adaptation. 

µ=+ )()1( twtw
               (12)
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i

layer can be expressed according to the rule of composition differentiation
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are represented by outputs yp
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-

the relationship without modification, only rewrite the differentiation
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of a neuron of the last layer

p

k

p

k
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k
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k

j

k

j yetwtw 100000 )'()(2)()1( +=+ µ
              (20)

p and possibly differentiation ’. For neurons 
of the output layer, error ep

p

k

jdpjp

k

j yye =
              (21)

Of course, the differentiation -

differentiation.  

y = 
1

1+e
              (22)
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y(1–y)y' = = = = 
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1+e

1 11–
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64

neural networks – perceptrons

-

At this point, we are able to determine the error and perform adaptation of the output layer neurons using a 

-
den layers:
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from the definition for neurons of the output layer only in the part for calculating error ep at the neuron output.
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where the following applies to neurons of the output layer:
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�e below relation applies to neurons of inner hidden layers:
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-rule for a single neuron is straightforward. 

-
den layer is obtained by summing the errors   of all neurons at outputs from the following (k+1) layer, where  
this error   is multiplied by the differentiation of the transfer output function ’    and also by the  

  of the synapse between the neurons of both layers.

�e principle of error backpropagation algorithm consists in determining the error at the outputs of all neu-
-

ror is also used for adaptation of the hidden layer: the error from the output layer actually spreads through the 
-

-

called error backpropagation algorithm.
 

x x

δ δ δ1 2 3

1 2

Fig. 5.15 Illustration of the error backpropagation algorithm

In points, the error backpropagation algorithm for a created multilayer perceptron can be summarized as follows:

1. Initialize the network weights

 to the network
4. Determine the network response  to 

5.5.6 Minimization of the error function using adaptation algorithm
Adaptation algorithm, for example the mentioned BP algorithm, performs minimization of the error function 

by searching for the minimum on the error hypersurface through the use of a gradient method. During the opti-
mization process, each network weight can be seen as one dimension of the n-dimensional error space. For two 

-
work weights. �e task of the adaptation process is to get as low as possible on this hypersurface, ideally into the 
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Fig. 5.16 Minimization of error function during adaptation

-

Starting initialization of neuron weights
�e starting initialization of weights defines a point on the error surface from where the algorithm starts when 

 
-

zation will end in this local minimum. Unfortunately, we are not able to practically estimate the correct starting  

it fails.

Selection of the rate constant μ 
-

-

the minimization process.

Complexity of the error function

the inputs reduces the incidence of local minima on the surface of error function and simplifies its shape. Un-

 


e method of presenting inputs of the training set
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Modification of the BP algorithm

of BP algorithm consists in the introduction of inertia  close to  

)()()1( twtwtw +=+
              (32)

When introducing inertia  into the relation, we get 

)1()()1()()1( ++=+ twtwtwtw               (33)

For 

5.5.7 Multilayer perceptron and overlearning syndrome 
-

-
-

-

unable to generalize, as seen in decrease in network performance with regard to the test set.
 

Training set

network performance

Collection of substantial features
�e network adapts to unsubstantial 

details

Test set

Number of learning steps

Fig. 5.17 Overlearning syndrome
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When designing a perceptron, if possible, we also try to choose a small number of neurons in the hidden lay-

-
tort the presented inputs, for example by random noise.

5.6 literature
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6. NETWORKS WITH MUTUAL RELATIONS
6.1 basic information

Mathematical Biology study programme. �is chapter deals with the concept of neural networks with mutual 

-

discussed in more detail.

6.2 learning outcomes
Mastering the learning text will enable students to:

Become familiar with the principles of associative neural networks.
Understand the organization and active dynamics of Hopfield networks. 
Understand the introduction of the concepts of status, power and a
ractors of Hopfield networks. 
Set the network a
ractors using inequalities, including the procedures preventing false a
ractors. 
Understand the differences between stochastic neuron and its deterministic variant, and describe the Boltzmann  

  machine as a stochastic extension of the Hopfield network. 
Understand the basic principle of heteroassociative networks on the example of bidirectional associative memory

6.3 general characteristics of artificial neural networks with mutual relations

-
-

-

-

initially random arrangement of directions of the magnetic moments of atoms in the crystalline grid, but which 
leads to an ordered stable state.
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input value input value

input value input value

input valueinput value weight matrix

Fig. 6.1 General organizational dynamics of Hopfield networks

-
plete form. An example might be the presentation of a distorted or incomplete picture of a person’s face to the 

6.4 hopfield network

6.4.1 Organization dynamics

outputs of all other i-th neurons. �e weights are symmetric: 

wij = wji                   (1)
and

wii = 0.                   (2)

�e neuron output is represented by the internal state of the neuron as shown below. In the Hopfield network, 

setup of the neuron state. It is good to realize what applies to the basic model of Hopfield networks with no hid-
x

V N.

6.4.1.1 States of the Hopfield network
-

ted as w, explicit thresholds of neurons are denoted as , and outputs, i.e. the states of neurons, are denoted as V. 
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V

V V32

1 υ = - 0,1

w  = 0,2

w  = 0,6

w  = w  = - 0,5

υ = 0υ = 0

1

32

12 21

23

13

Fig. 6.2 Hopfield network with three nodes

i

single neuron as 

===
j

ijijiii VwyV )()(
                 (3)

where    has bipolar or binary 
character. 

iei +
=

1
1)(

                 (4)

is called the continuous Hopfield network, unlike its discrete implementation with binary or bipolar neurons. 

V of 
i

6.4.2 Active dynamics of Hopfield networks
-

napses between the neurons. 

x
i of all neurons, i.e. also of the whole network. �e state of each i-th neuron is 

A�er the state update, the state of a binary neuron can be changed to opposite or may remain unchanged. �e 

the threshold of excited neuron) with which it is interconnected by rated connections. �e strength and character 
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excitatory eff ects. A� er changing the state of each neuron, the network switches to the next state also as a whole.

tion is repeated. 

it reaches a steady state where transitions are no longer feasible. In other words, it is not possible to select any 
neuron that would change its status to the opposite.

 

Fig. 6.3 Applet to demonstrate the capabilities of Hopfi eld networks. 
(h� p://www.cbu.edu/~pong/ai/hopfi eld/hopfi eld.html)

6.4.2.1 ; e energy function

==
j

ijijiiii VwVVE )(
                   (5)

by summation of partial energies of all neurons as 

=
i

iiVE

                   (6)

can be expressed as

iii VE =
                   (7)

It depends only on the change in the neuron state,  , because the inner potential  of the neuron selected 

i i

i i i

Change of Vi  from 0 -> 1. Here applies that   . However, this situation can occur only when   .  According to 
  equation (7), the result is  .

Change of Vi from 1 -> 0. Here applies that  . However, this situation can occur only when  . According to 
  equation (7), the result is   .
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network states with low energy are more stable than the states with high energy. �e network, thus, gradually 
-

ron can switch to a lower energy state. �e network stabilizes its state to that of low energy from which no more 
-

6.4.2.2 ;e state map of transitions
-

sitions. Each node in this map contains information about the current state of the network as well as about the 
energy that corresponds to this state.

 

V V V1      2       3

E
Fig. 6.4 A node in the state map of transitions and its content

-
-
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Fig. 6.5 Hopfield network with three nodes and the corresponding map of transitions

 

and the network remains stable. 
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6.4.3 Adaptation dynamics
-

M = {x1, x2, …. xpmax} = {V1, V2, …. Vpmax}                (8)

-

-
bility p(s) of network stable state can be expressed as

=
P

N

x dxesp
2

0

21
2
1)(

                (9)

P≈0,15N                (10)

correspond to the local minima of energy function. 

P≈
2log

2
N

N

                 (11)

-

6.4.3.1 Hebb rule

are then po-

-
ned. �e resulting weight then represents the difference between the consistent and inconsistent states (outputs 

i) of neurons for all inputs from the training set.

 between neurons can be set for binary neurons according to the relation 

jiforVVxxw
p

ji

p

jiij == ,]1][1[]1][1[
maxmax                  (12)
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For bipolar neurons, the relationship is simpler. 

ijijw V jVx x= =
pmax pmax

for ji

                (13)

-

6.4.3.2 Adjustment by inequalities

Again, consider a Hopfield network with three interconnected nodes.

V

V V32

1

υ

w 

w  

w  

υυ

1

32

12

23

13

Fig. 6.6 Example of the Hopfield network

-

V1 = 0        ξ1≤0→w12 V2+w13 V3- 1≤0 a�er substituting for V: w12- 1≤0

V2 = 1       ξ2>0→w12 V1+w23 V3- 2≤0 a�er substituting for V: 2<0

V3 = 0       ξ3≤0→w13 V1+w23 V2- 3≤0 a�er substituting for V: w23- 3≤0

Tab. 6.1 �e system of inequalities for the a�ractor A

V1 = 1      ξ1≥0→w12 V2+w13 V3- 1>0 a�er substituting for V: w12+w13- 1>0

V2 = 1      ξ2≥0→w12 V1+w23 V3- 2>0 a�er substituting for V: w12+w23- 2>0

V3 = 1      ξ3≥0→w13 V1+w23 V2- 3>0 a�er substituting for V: w13+w23- 3>0

Tab. 6.2 �e system of inequalities for the a�ractor B
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12

-
-
-

summarized into the following steps:

x1, x2 xpmax

x  
 (states) 

 
 nothing.

4. Otherwise, modify the weights of excited inputs and threshold of the actual neuron by selected ±Δ de- 
 pending on the neuron response 

i i

i i

6.5 boltzmann machine

6.5.1 Organization dynamics
Organization dynamics of the Boltzmann machine is exactly the same as in Hopfield networks, most com-

monly Hopfield networks with hidden neurons. �e difference is in the type of used neurons. �ey do not beha-

-

�e basis of Boltzmann machine is a stochastic neuron for which we know the probability P of its being in the 
-

bility of state change is o�en a sigmoidal function modified by parameter T. Depending on the temperature, the 
.

           
T

i
i

e

P
++

==
11

1)(

      (14)

-
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P

T = 4

T = 
T = 1

0

1
1
4

ξ

Fig. 6.7 �e course of the probability activation function depending on T and  , according to [1]

6.5.2 Active dynamics

i

j

jiji tywt = )()(
                 (15)

-

))((}1)1({ ttyP ii ==+
                 (16)

or 

)).((}1)1({1}0)1({ ttyPtyP iii ==+==+
                 (17)

other states. 
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Fig. 6.8 Example of a network
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-
le in the Hopfield network increases with increasing temperature T.  

-

-
-

-
-

6.6 bidirectional associative memory (bam)
-

6.6.1 Organization dynamics
It is a network that consists of two layers of completely interconnected neurons. Each of these layers is si-

x associates 
x is associated on the inputs of the second layer 

y. 
 w

w

y

y

y

y

x

x

x

x
nm

11

1

2

3

n m

3

2

1

Fig. 6.9 BAM topology according to [5]

6.6.2 Adaptation dynamics

x and y. �e 
maximum number of pairs of associations that can be remembered by the network is min (m, n). 

M = {[x1,y1], [x2,y2]…. [xpmax,ypmax]}                  (18)
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Weights can be set according to the relation

==
==

max

1

max

1

p

p

pp
p

p
ijij ji

yxww

                 (19)

which can be modified to matrix notation as follows:

=
=

max

1
)(

p

p

pTp YXW

                 (20)

�e entire network configuration is then represented by a matrix of weights W. 

x1 1 x2 2

weights.

 

W=
2
2

2
0
0
0

0
0

0 0

0

0

0

0

0 -2
-2

-2
-2

-2

-22
2
2

6.6.3 Active dynamics

and this signal, multiplied by the weights, propagates to neurons of the opposite layer, which again synchronou-

-
re back to the opposite, initially input layer. �is mutual signal exchange takes place until the network state sta-
bilizes, i.e. until the moment when the outputs on either network layer do not change. A�er reaching this stea-

For bipolar BAM, its response at the steady shape can be easily expressed according to the relations 

Y = sgn(XW)                 (21)

X = sgn (YWT)                 (22)

-
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6.7 literature
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7. COMPETITIVE NETWORKS
7.1 basic information

-
honen model of self-organizing maps will be discussed in detail.

7.2 learning outcomes
Mastering the learning text will enable students to:

Describe the principle of competitive networks and demonstrate this principle on the dynamics of MAXNET network 
Become familiar with the dynamics of Hamming network and demonstrate its active dynamics on a model  

  example 
Understand the organization and active dynamics of Kohonen self-organizing maps 
Formally define the adaptation dynamics of Kohonen maps, to describe the pitfalls of Kohonen learning and  

  carry out its expansion by LVQ1, LVQ2, LVQ3 algorithms

7.3 a simple competitive network maxnet

-

-

thus corresponds to the block for maximum selection.

7.3.1 Organization dynamics

perceptrons. In this layer, neurons are connected to each other. 
 

1 2 3 M

Fig. 7.1 Competitive layer of MAXNET network

�resholds of all neurons are zero

ifori = 0
                   (1)
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jiforwij == 1
                 (2)

)

jiforwij =
                  (3)

 

M

1
0 <<

                 (4)

to the expected number of classes into which we want to classify. 

-

 

-1/3

-1/3
1 1BA

Fig. 7.2 Simple competitive network MAXNET with two neurons in the competitive layer

7.3.2 Adaptation dynamics
-

on the basis of inputs from the training set. 

M = {x1, x2, …. xpmax}                 (5)

Adjustment of fixed values of weights in the competitive layer
Adjustment of the input layer weights to random values or according to priori knowledge of the expected clusters  

  (typical representative). A single weight between the i-th element of the input vector and the j-th neuron of the  
  competitive layer is usually chosen in the interval (0,1), so that  
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Presentation of input vector x to the network 
Calculation of primary outputs of neurons of the competitive layer 
Competition of neurons during single steps in the competitive layer (input is disconnected)
Determination of the winning neuron, the representative with non-zero output 
Adjustment of the weights of the winning neuron    by    (6) and their normalization  

  to  

                  

iw
M

xw ijiij = ,
1

                  (7)

Repetition of the process for the next input vector x. During network learning, the coefficient    usually  
  gradually decreases. �is procedure speeds up network convergence. 

wA
and wB= x
of neuron A will be yA B

winning neuron will be neuron B (yA< yB B

Select 
A�er presenting the first input, the weights will be
 
 w1B

w2B

 w

w4B

 

be classified into any of the classes. 

Similarly, we would proceed in the adaptation of weights also for other presented inputs. An important feature 

therefore, faults in network classification are not and cannot be assessed. �e network forms clusters indepen-

7.3.3 Active dynamics
-
-

wA
and wB=
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-
rithm, adaptation can theoretically run again and again based on continuously presented new inputs. 

7.4 hamming network

7.4.1 Organizational dynamics
 y y y y y0 1 M-3 M-2 M-1

x0 x1 xN-1

Fig. 7.3 Hamming network

7.4.2 Adaptation dynamics

x. 

M = {x1, x2, …. XM}                  (8)

�e parameters of the Hamming layer, i.e. weights and thresholds of i-th neuron, are set by direct calculation 

�resholds of i-th neuron are set to

ipro
N

i =
2

                  (9)
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x, in compliance with 
the relation

iproxw ii =
2
1

                  (10)

7.4.3 Active dynamics

-

1 2

x

response of i-th neuron of the Hamming layer, we can write 

y1
1 1

y2
2 2

y

x in terms of the Hamming 
distance. 

-

7.5 self-organizing maps

7.5.1 A simple self-organizing map – organization and active dynamics
-

�e organizational structure of simple self-organizing maps is identical to the network described in the sec-

-
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input layer

input values

Competitive layer of 
representatives

weight matrix

Fig. 7.4 General topology of a self-organizing map

-

7.5.2 Adaptation dynamic of simple self-organizing maps – Kohonen learning

weights, only on the basis of inputs presented from the training set. 

M = {x1, x2, …. xpmax}                  (11)

training set is applied. �e network determines the winning i-th neuron. Weights of the winning neuron are 
modified according to the following relation 

wi(k+1) = wi(k) +   (x(k)- wi(k)).

where   is a parameter from the interval (0,1>.                   (12)

Parameter  w x and the speed of learning. At the 

idea of adaptation is as follows: through weight modification, we shi� the position of the winning representati-

-
fied inputs, i.e. the sought clusters. Imagine a situation where we want to identify clusters in the classical two-

-
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-

-

unchanged. In practice, this basic algorithm o�en fails. �e illustrated problem can be addressed by the exten-

7.5.3 Kohonen self-organizing maps – organization and active dynamics
-
-

are logically arranged in geometric structure. Most o�en, it is a line or a grid, but it may be basically arbitrary. 
Usually, its size has much lower dimension than the original input space.

 
1 - vicinity 2 - vicinity

selected detector

Fig. 7.5 Definition of the detector neighbourhood according to [2]

-

7.5.4 Kohonen self-organizing maps – adaptation dynamics
-

namics that takes into account the geometrical arrangement of detectors. �e adaptation is again based on the 
-

-
-

ter  
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Parameter  -
lue may fall with the distance from the winner, e.g. according to Gaussian function with its centre in the win-

topological arrangement (e.g. on a grid), are close to each other a�er adaptation also in the original input space.

7.5.5 Kohonen self-organizing maps – supervised learning

-
ted inputs into a pre-known number of named categories. For this purpose, we use the learning algorithms of 

�e first learning phase is identical for all three algorithms and consists in applying the standard algorithm 
x of the 

y are not used. 

M = {[x1,yd
1], [x2,yd

2]…. [xpmax,yd
pmax]}                  (13)

A�er network learning, we identify how the network classifies across the whole training set. For each input 
x x. At the same time, 

we dispose of the correct category yd -
med categories yd x

algorithms. 

LVQ1 algorithm works as follows: we present inputs from the training set to the network and determine the 

wi(k+1) = wi(k) +   (x(k)- wi(k))                          
and

wi(k+1) = wi(k) -  (x(k)- wi(k))                  (14)

for incorrectly classified inputs.

-
-

-
fferent classes.

LVQ2

true that one of them classifies correctly and the other incorrectly. Furthermore, it must true that the input is not 
-
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or put it off, according to the classification correctness. 

LVQ3

wi(k+1) = wi(k) +   (x(k)- wi(k)).                  (15)

 remains constant during the 

7.6 literature
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8. INTRODUCTION TO GENETIC ALGORITHMS (GA)
8.1 basic information

-
matical Biology study programme. �is chapter deals with the basic concepts of genetic algorithms (GA) and ex-
plains the procedures generally used in their implementation. 

8.2 learning outcomes
Mastering the learning text will enable students to:

Understand the basic concepts such as the individual, population, objective function, the fitness of an individual 
Understand the operations used in the implementation of genetic algorithms – selection, crossover, mutation 
Become familiar with some selection methods and compare them with each other 
Understand the relationship between GA and algorithms used in NN

8.3 basic concepts of genetic algorithms

8.3.1 Introduction
-
-

with some simplification, we can say that specific forms of genes (alleles) and their combinations are responsible 

-

-
nary theory.

8.3.2 Basic concepts
�e basic GA concepts include the notion of the individual, . In GA, in compliance with the biological ana-

-
-

-
-

1..ak  can be described as a string 

{ }NP ,...,, 21=
                   (1)

{ }NP ,...,, 21=
                   (2)
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generation. 

  performs mapping from the binary genotype space into the space of real num-
-

lue is analogous to the phenotype and performs transformation.

{ } R
k

1,0
                   (3)

-
mics – minimization of the network error function.

-
 

representation F( )

( ) ( ) ( ) ( ) 0: 2121 FFffPn                    (4)

=
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                   (5)

=
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                   (6)

-

( )[ ]maxmin

maxmin

)(1
1

)( fff
ff

F +=

where 

�e solution of the problem using GA seems to be, generally, as follows: we dispose of (or generate) an initial 

-
on to reproduce. In this way, we generate a new population representing other elements of the solution space. 
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-
pulation remains generally constant.

�e solution or the group of possible solutions to a task using GA is, therefore, represented by the search for 

-

8.3.3 Selection operator
-

8.3.3.1 ;e rouleQe selection

=

N

j

i

F

F
ip )(

                    (8)

==

N

j

i

N

j

i

F

FN

N

F

F
iEV

*)(

                   (9)

-

-

through the space of possible solutions. 

8.3.3.2 Marshalling method

)()()( 1 Ni FFF
                    (10)

1
1))1()(()1()( +=

N

i
EVNEVEViEV

                   (11)

-
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-

8.3.3.3 Linear and exponential selection
-

1
1))((1)( += +

N

i
nnn

N
ip

, where n+ is an arbitrary selected evaluation of the best individual, typically in the range of 1 < n+ <2, 
n-   is the evaluation of the worst ranking individual n- = 2- n+ in the population.                   (12)

 
+

- -
+ - n-)based on a linear dependence of its index position i in the population.

�e ratio n- +

-

=

N

jN

iN

c

c
ip )(

                   (13)

-
lection algorithm with exponential selection is one of the algorithms o�en used in practice.

8.3.3.4 Boltzmann selection
�e Boltzmann selection is an analogy with simulated annealing, which we came across in the Boltzmann ma-

=

N
j

T

F

F

Ne
iEV

i

)(

                   (14)
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8.3.3.5 Other types of selection

other methods. Tournament selection -

elitism

generation together with the descendants. Another method of selection is trimming
-

random selection

-
tion, as mentioned in the elitism selection.

8.3.5 Mutation
As in nature, the mutation operator introduces a random element to the reproduction and thus allows escaping 

111).

-
side the area of the solution space explored so far. �is allows us to examine new opportunities and the solution 
space is explored to a greater extent with regard to the effort of finding the global minimum.

8.4 ga tasks

8.4.1 GA summary
Typical steps of GA can be summarized as follows: 

gradient methods in the search for solutions, basically proceeding in one, probably the most correct direction, 
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-
-

using the gradient method.

8.4.2 Relation between GA and NN
GA can be also successfully used for optimizing neural networks. GA are mostly applied in the process of or-

ganization and adaptation dynamics where they optimize topology or weights of neural networks.

-
ber of neurons, their parameters, arrangement into layers and connections. Usually, the algorithms are based 

initial complex network is gradually simplified while maintaining the performance parameters. In the phase of 
-

-

-

GA can also be used simultaneously, in the phase of adaptation as well as organization dynamics. Despite their 

are able to find a network with the simplest and most optimum structure while maintaining the performance 
parameters. For the adaptation of network weights, in addition to GA, we can possibly use the gradient backpro-
pagation algorithm that is much less computationally demanding and brings mostly satisfactory results despite 

8.5 literature
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